Постреляционная модель
Классическая реляционная модель предполагает неделимость данных, хранящихся в полях записей таблиц. Постреляционная модель представляет собой расширенную реляционную модель, снимающую ограничение неделимости данных. Модель допускает многозначные поля – поля, значения которых состоят из подзначений. Набор значений многозначных полей считается самостоятельной таблицей, встроенной в основную таблицу.
На рис. 2.6 на примере информации о накладных и товарах для сравнения приведено представление одних и тех же данных с помощью реляционной и постреляционной моделей. Из рис. 2.6 видно, что по сравнению с реляционной моделью в постреляционной модели данные хранятся более эффективно, а при обработке не потребуется выполнять операцию соединения данных из двух таблиц.
а)
Накладные Накладные-товары
N накладной | Покупатель | N накладной | Товар | Количество | |
Сыр | |||||
Рыба | |||||
Лимонад | |||||
Сок | |||||
Печенье | |||||
Йогурт |
б)
Накладные
N накладной | Покупатель | Товар | Количество |
Сыр | |||
Рыба | |||
Лимонад | |||
Сок | |||
Печенье | |||
Йогурт |
Рис. 2.6. Структуры данных реляционной (а) и постреляционной (б) моделей
Поскольку постреляционная модель допускает хранение в таблицах ненормализованных данных, возникает проблема обеспечения целостности и непротиворечивости данных. Эта проблема решается включением в СУБД соответствующих механизмов.
Достоинством постреляционной модели является возможность представления совокупности связанных реляционных таблиц одной постреляционной таблицей. Это обеспечивает высокую наглядность представления информации и повышение эффективности ее обработки.
Недостатком постреляционной модели является сложность решения проблемы обеспечения целостности и непротиворечивости хранимых данных.
Рассмотренная постреляционная модель данных поддерживается СУБД uniVers. К числу других СУБД, основанных на постреляционной модели данных, относятся также системы Bubba и Dasdb.
Многомерная модель
Многомерный подход к представлению данных появился практически одновременно с реляционным, но интерес к многомерным СУБД стал приобретать массовый характер с середины 90-х годов. Толчком послужила в 1993 году статья Э. Кодда. В ней были сформулированы 12 основных требований к системам класса OLAP (OnLine Analytical Processing – оперативная аналитическая обработка), важнейшие из которых связаны с возможностями концептуального представления и обработки многомерных данных.
В развитии концепций информационных систем можно выделить следующие два направления:
1) системы оперативной (транзакционной) обработки;
2) системы аналитической обработки (системы поддержки принятия решений).
Реляционные СУБД предназначались для информационных систем оперативной обработки информации и в этой области весьма эффективны. В системах аналитической обработки они показали себя несколько неповоротливыми и недостаточно гибкими. Более эффективными здесь оказываются многомерные СУБД.
Многомерные СУБД являются узкоспециализированными СУБД, предназначенными для интерактивной аналитической обработки информации. Основные понятия, используемые в этих СУБД: агрегируемость, историчность и прогнозируемость.
Агрегируемость данных означает рассмотрение информации на различных уровнях ее обобщения. В информационных системах степень детальности представления информации для пользователя зависит от его уровня: аналитик, пользователь, управляющий, руководитель.
Историчность данных предполагает обеспечение высокого уровня статичности собственно данных и их взаимосвязей, а также обязательность привязки данных ко времени.
Прогнозируемость данных подразумевает задание функций прогнозирования и применение их к различным временным интервалам.
Многомерность модели данных означает не многомерность визуализации цифровых данных, а многомерное логическое представление структуры информации при описании и в операциях манипулирования данными.
По сравнению с реляционной моделью многомерная организация данных обладает более высокой наглядностью и информативностью. Для иллюстрации на рис. 2.7 приведены реляционное (а) и многомерное (б) представления одних и тех же данных об объемах продаж автомобилей.
Если речь идет о многомерной модели с мерностью больше двух, то не обязательно визуально информация представляется в виде многомерных объектов (трех-, четырех- и более мерных гиперкубов). Пользователю и в этих случаях более удобно иметь дело с двумерными таблицами или графиками. Данные при этом представляют собой «вырезки» из многомерного хранилища данных, выполненные с разной степенью детализации.
а) б)
Модель | Месяц | Объем | Модель | Июнь | Июль | Август | |
Жигули | июнь | Жигули | |||||
Жигули | июль | Москвич | No | ||||
Жигули | август | Волга | No | No | |||
Москвич | июнь | ||||||
Москвич | июль | ||||||
Волга | июль |
Рис. 2.7. Реляционное (а) и многомерное (б) представление данных
Основные понятия многомерных моделей данных: измерение и ячейка.
Измерение – это множество однотипных данных, образующих одну из граней гиперкуба. В многомерной модели измерения играют роль индексов, служащих для идентификации конкретных значений в ячейках гиперкуба.
Ячейка – это поле, значение которого однозначно определяется фиксированным набором измерений. Тип поля чаще всего определен как цифровой. В зависимости от того, как формируются значения некоторой ячейки, она может быть переменной (значения изменяются и могут быть загружены из внешнего источника данных или сформированы программно) либо формулой (значения, подобно формульным ячейкам электронных таблиц, вычисляются по заранее заданным формулам).
В примере на рис. 2.7, б каждое значение ячейки Объем продаж однозначно определяется комбинацией временного измерения Месяц продаж и модели автомобиля. На практике зачастую требуется большее количество измерений. Пример трехмерной модели данных приведен на рис. 2.8.
Рис. 2.8. Пример трехмерной модели
В существующих многомерных СУБД используются две основные схемы организации данных: гиперкубическая и поликубическая.
В поликубической схеме предполагается, что в БД может быть определено несколько гиперкубов с различной размерностью и с различными измерениями в качестве граней. Примером системы, поддерживающей поликубический вариант БД, является сервер Oracle Express Server.
В случае гиперкубической схемы предполагается, что все ячейки определяются одним и тем же набором измерений. Это означает, что при наличии нескольких гиперкубов в БД, все они имеют одинаковую размерность и совпадающие измерения.
Основным достоинством многомерной модели данных является удобство и эффективность аналитической обработки больших объемов данных, связанных со временем.
Недостатком многомерной модели данных является ее громоздкость для простейших задач обычной оперативной обработки информации.
Примерами систем, поддерживающими многомерные модели данных, является Essbase, Media Multi-matrix, Oracle Express Server, Cache. Существуют программные продукты, например Media/MR, позволяющие одновременно работать с многомерными и с реляционными БД.
Дата добавления: 2016-06-15; просмотров: 2393;