Приведение к равнодействующей двух сил, направленных в разные стороны


 

Рассмотрим сложение двух сил, направленных в разные стороны. Пусть имеем две силы и (F2>F1) (рис.3.2а). Возьмем на продолжении прямой ВА точку С и приложим к ней уравновешенные силы и , параллельные силам и (рис.3.2б).

а     При этом модуль и положение точки С должны удовлетворять уравнению (3.4): , . (3.5) Сложим силы и . Получим, что их равнодействующая равна по модулю , т.е. равна по модулю F2 и приложена в точке А. После этого силы и можно
б    
в
Рис.3.2

отбросить как уравновешенные. В результате заданные силы и будут заменены одной силой , которая является их равнодействующей. Модуль этой равнодействующей и точка ее приложения С определяются по формулам (3.5) (рис.3.2в).

Пример. Определить реакции опор в шарнирно - опертой балке АВ, показанной на рис. 3.3а. Дано: Р=9кН, а=6м, b=12м.

Решение. Отбросим связи и заменим их реакциями (рис. 3.3б). Реакция шарнирно - подвижной опоры направлена параллельно линии действия внешней силы Р, следовательно, их уравновешивающая сила должна быть им параллельна. Согласно (3.5), имеем

 

,

 

Рис. 3.3

откуда

кН,

кН.

Сделаем проверку. Балка АБ находится в равновесии, следовательно, равнодействующая системы параллельных сил должна быть равна нулю:

 

.



Дата добавления: 2019-12-09; просмотров: 607;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.