Переходный процесс при коротком замыкании трансформатора
В условиях эксплуатации короткие замыкания обычно возникают внезапно в результате различного рода аварий в электрических сетях. При этом в трансформаторе происходит переходный процесс, сопровождающийся большими значениями токов в обмотках. Анализ переходного процесса позволяет при внезапном коротком замыкании оценить уровень этих токов в зависимости от различных влияющих факторов.
Ограничимся рассмотрением процесса короткого замыкания однофазного трансформатора, работавшего до этого в режиме холостого хода (рис. 2.50). Примем допущение, что напряжение сети не зависит от режима работы трансформатора, а также будем полагать, что магнитопровод трансформатора во время короткого замыкания не насыщен, поскольку поток взаимоиндукции Ф при коротком замыкании снижается почти вдвое из-за сильного размагничивающего действия токов вторичной обмотки (см. п. 2.5.2). Это допущение позволяет пренебречь током намагничивания и положить в основу расчета тока внезапного короткого замыкания упрощенную схему замещения (рис. 2.51). Процессы в этой схеме описываются линейным дифференциальным уравнением
. (2.31)
Решение данного уравнения имеет вид
. (2.32)
Установившаяся составляющая представляет собой частное решение уравнения (2.31):
,
а свободная составляющая определяется из однородного дифференциального уравнения
.
Для нахождения постоянной интегрирования С зададим начальные условия в момент возникновения короткого замыкания: . Подставляя это условие в (2.32), получим
.
Отсюда . С учетом полученных соотношений выражение для тока короткого замыкания можно представить в виде
. (2.33)
Выражение (2.33) показывает, что свободная составляющая тока короткого замыкания имеет максимальное значение при и . При этих условиях ударное значение тока короткого замыкания почти в два раза превышает его установившееся значение.
Изменение тока для случая показано на рис. 2.52. Ток короткого замыкания достигает максимального значения через полпериода после начала аварии,
.
Ток можно выразить через напряжение короткого замыкания трансформатора,
,
а коэффициент затухания через его составляющие,
.
Для силовых трансформаторов ; . При этих параметрах максимальный ток короткого замыкания может достигать значений
.
Действие этого тока выражается в увеличении нагрева обмоток и в значительном возрастании электромагнитных сил, действующих на обмотки. В современных энергосистемах применяют быстродействующую релейную защиту, отключающую аварийный участок за . За это время трансформатор не успеет нагреться до предельно допустимой температуры.
Более опасным является действие электромагнитных сил. Происхождение этих сил обусловлено взаимодействием поля рассеяния обмоток трансформатора с током, протекающим по этим обмоткам. Сила, приходящаяся на единицу длины проводника, определяется произведением индукции поля рассеяния на ток:
.
В нормальных режимах эта сила невелика. Например, при токе и индукции сила . Такая сила не представляет опасности для проводника. Во время короткого замыкания произведение возрастает пропорционально квадрату тока, поэтому электромагнитные силы превышают их значения в рабочих режимах в сотни раз. Эти силы пульсируют с частотой 100 Гц, вызывая вибрацию и деформацию обмоток. При механических напряжениях, превышающих , деформации становятся необратимыми и обмотка разрушается.
Дата добавления: 2017-11-21; просмотров: 1705;