Дисперсные системы: определение, классификации.


Дисперсными называют гетерогенные системы, в которых одно вещество в виде очень мелких частиц равномерно распределено в объеме другого.

То вещество, которое присутствует в меньшем количе­стве и распределено в объеме другого, называют дисперсной фазой. Она может состоять из нескольких веществ.

Вещество, присутствующее в большем количестве, в объеме которого распределена дисперсная фаза, называют дисперсионной средой. Между ней и частицами дисперсной фазы существует поверхность раздела, поэтому дисперсные системы называют гетерогенными (неоднородными).

И дисперсионную среду, и дисперсную фазу могут представлять вещества, находящиеся в различных агрегатных состояниях − твердом, жидком и газообразном.

В зависимости от сочетания агрегатного состояния дисперсионной среды и дисперсной фазы можно выделить 8 видов таких систем.

По величине частиц веществ, составляющих дисперсную фазу, дисперсные системы делят на грубодисперсные (взвеси) с размерами частиц более 100 нм и тонкодисперсные (коллоидные растворы или коллоидные системы) с размерами частиц от 100 до 1 нм. Если же вещество раздроблено до молекул или ионов размером менее 1 нм, образуется гомогенная система − раствор. Она однородна (гомогенна), поверхности раздела между частицами дисперсной фазы и средой нет.

Уже беглое знакомство с дисперсными системами и растворами показывает, насколько они важны в повседневной жизни и в природе (см. таблицу).

Таблица. Примеры дисперсных систем

Дисперсионная среда Дисперсная фаза Примеры некоторых природных и бытовых дисперсных систем
Газ Жидкость Туман, попутный газ с капельками нефти, карбюраторная смесь в двигателях автомобилей (капельки бензина в воздухе), аэрозоли
Твердое вещество Пыли в воздухе, дымы, смог, самумы (пыльные и песчаные бури), аэрозоли
Жидкость Газ Шипучие напитки, пены
Жидкость Эмульсии. Жидкие среды организма (плазма крови, лимфа, пищеварительные соки), жидкое содержимое клеток (цитоплазма, кариоплазма)
Твердое вещество Золи, гели, пасты (кисели, студни, клеи). Речной и морской ил, взвешенные в воде; строительные растворы
Твердое вещество Газ Снежный наст с пузырьками воздуха в нем, почва, текстильные ткани, кирпич и керамика, поролон, пористый шоколад, порошки
Жидкость Влажная почва, медицинские и косметические средства (мази, тушь, помада и т. д.)
Твердое вещество Горные породы, цветные стекла, некоторые сплавы

Судите сами: без нильского ила не состоялась бы великая цивилизация Древнего Египта; без воды, воздуха, горных пород и минералов вообще бы не существовала живая планета − наш общий дом − Земля; без клеток не было бы живых организмов и т. д.

Если все частицы дисперсной фазы имеют одинаковые размеры, то такие системы называют монодисперсными (рис. 1, а и б). Частицы дисперсной фазы неодинакового размера образуют полидисперсные системы (рис.1, в).

 

 

Рис. 1. Свободнодисперсные системы: корпускулярно − (а-в), волокнисто − (г) и пленочно-дисперсные − (д); а, б − монодисперсные; в − полидисперсная система.

 

Дисперсные системы могут быть свободнодисперсными(рис. 1) и связнодисперсными (рис. 2, а − в) в зависимости от отсутствия или наличия взаимодействия между частицами дисперсной фазы. К свободнодисперсным системам относятся аэрозоли, разбавленные суспензии и эмульсии. Они текучи, в этих системах частицы дисперсной фазы не имеют контактов, участвуют в беспорядочном тепловом движении, свободно перемещаются под действием силы тяжести. Связнодисперсные системы − твердообразны; они возникают при контакте частиц дисперсной фазы, приводящем к образованию структуры в виде каркаса или сетки. Такая структура ограничивает текучесть дисперсной системы и придает ей способность сохранять форму. Порошки, концентрированные эмульсии и суспензии (пасты), пены, гели – примеры связнодисперсных систем. Сплошную массу вещества могут пронизывать поры и капилляры, образующие капиллярно-дисперсные системы (кожа, картон, ткани, древесина).

 

 

Рис. 3. Связнодисперсные (а-в) и капиллярно-дисперсные (г, д) системы: гель (а), коагулянт с плотной (б) и рыхлой – арочной (в) структурой.

Дисперсные системы, в соответствии с их промежуточным положением между миром молекул и крупных тел, могут быть получены двумя путями: методами диспергирования, т. е. измельчения крупных тел, и методами конденсации молекулярно- или ионнорастворенных веществ.

Под взаимодействием фаз дисперсных систем подразумевают процессы сольватации (гидратации в случае водных систем), т. е. образование сольватных (гидратных) оболочек из молекул дисперсионной среды вокруг частиц дисперсной фазы. Соответственно, по интенсивности взаимодействия между веществами дисперсной фазы и дисперсионной среды (только для систем с жидкой дисперсионной средой), по предложению Г. Фрейндлиха различают следующие дисперсные системы:

Лиофильные (гидрофильные, если ДС – вода): мицеллярные растворы ПАВ, критические эмульсии, водные растворы некоторых природных ВМС, например, белков (желатина, яичного белка), полисахаридов (крахмала). Для них характерно сильное взаимодействие частиц ДФ с молекулами ДС. В предельном случае наблюдается полное растворение. Лиофильные дисперсные системы образуются самопроизвольно вследствие процесса сольватации. Термодинамически агрегативно устойчивы.

Лиофобные (гидрофобные, если ДС – вода): эмульсии, суспензии, золи. Для них характерно слабое взаимодействие частиц ДФ с молекулами ДС. Самопроизвольно не образуются, для их образования необходимо затратить работу. Термодинамически агрегативно неустойчивы (т. е. имеют тенденцию к самопроизвольной агрегации частиц дисперсной фазы), их относительная устойчивость (так называемая метастабильность) обусловлена кинетическими факторами (т. е. низкой скоростью агрегации).

3. Взвеси.

Взвеси – это дисперсные системы, в которых размер частицы фазы более 100 нм. Это непрозрачные системы, отдельные частицы которых можно заметить невооруженным глазом. Дисперсная фаза и дисперсная среда легко разделяются отстаиванием, фильтрованием. Такие системы разделяются на:

1. Эмульсии (и среда, и фаза – нерастворимые друг в друге жидкости). Из воды и масла можно приготовить эмульсию длительным встряхиванием смеси. Это хорошо известные вам молоко, лимфа, водоэмульсионные краски и т.д.

2. Суспензии( среда – жидкость, фаза – нерастворимое в ней твердое вещество).Чтобы приготовить суспензию , надо вещество измельчить до тонкого порошка, высыпать в жидкость и хорошо взболтать. Со временем частица выпадут на дно сосуда. Очевидно, чем меньше частицы, тем дольше будет сохраняться суспензия. Это строительные растворы, взвешенный в воде речной и морской ил, живая взвесь микроскопических живых организмов в морской воде – планктон, которым питаются гиганты – киты, и т.д.

3. Аэрозоли взвеси в газе (например, в воздухе) мелких частиц жидкостей или твердых веществ. Различаются пыли, дымы, туманы. Первые два вида аэрозолей представляют собой взвеси твердых частиц в газе (более крупные частицы в пылях), последний – взвесь капелек жидкости в газе. Например: туман, грозовые тучи – взвесь в воздухе капелек воды, дым – мелких твердых частиц. А смог, висящий над крупнейшими городами мира, также аэрозоль с твердой и жидкой дисперсной фазой. Жители населенных пунктов вблизи цементных заводов страдают от всегда висящей в воздухе тончайшей цементной пыли, образующейся при размоле цементного сырья и продукта его обжига – клинкера. Дым заводских труб, смоги, мельчайшие капельки слюны, вылетающих изо рта больного гриппом, также вредные аэролози. Аэрозоли играют важную роль в природе, быту и производственной деятельности человека. Скопление облаков, обработка полей химикатами, нанесение лакокрасочных покрытий при помощи пульверизатора, лечение дыхательных путей (ингаляция) – примеры тех явлений и процессов, где аэрозоли приносят пользу. Аэрозоли – туманы над морским прибоем, вблизи водопадов и фонтанов, возникающая в них радуга доставляет человеку радость, эстетическое удовольствие.

Для химии наибольшее значение имеют дисперсные системы, в которых средой является вода и жидкие растворы.

Природная вода всегда содержит растворенные вещества. Природные водные растворы участвуют в процессах почвообразования и снабжают растения питательными веществами. Сложные процессы жизнедеятельности, происходящие в организмах человека и животных, также протекают в растворах. Многие технологические процессы в химической и других отраслях промышленности, например получение кислот, металлов, бумаги, соды, удобрений, протекают в растворах.

4. Коллоидные системы.

Коллоидные системы (в переводе с греческого “колла” – клей, “еидос” вид клееподобные) это такие дисперсные системы, в которых размер частиц фазы от 100 до 1 нм. Эти частицы не видны невооруженным глазом, и дисперсная фаза и дисперсная среда в таких системах отстаиванием разделяются с трудом.

Из курса общей биологии вам известно, что частицы такого размера можно обнаружить при помощи ультрамикроскопа, в котором используется принцип рассеивания света. Благодаря этому коллоидная частица в нем кажется яркой точкой на темном фоне.

Их подразделят на золи (коллоидные растворы) и гели (студни).

1. Коллоидные растворы, или золи. Это большинство жидкостей живой клетки (цитоплазма, ядерный сок – кариоплазма, содержимое органоидов и вакуолей). И живого организма в целом (кровь, лимфа, тканевая жидкость, пищеварительные соки и т.д.) Такие системы образуют клеи, крахмал, белки, некоторые полимеры.

Коллоидные растворы могут быть получены в результате химических реакций; например, при взаимодействии растворов силикатов калия или натрия (“растворимого стекла”) с растворами кислот образуется коллоидный раствор кремниевой кислоты. Золь образуется и при гидролизе хлорида железа (III) в горячей воде.

Характерное свойство коллоидных растворов – их прозрачность. Коллоидные растворы внешне похожи на истинные растворы. Их отличают от последних по образующейся “светящейся дорожке” – конусу при пропускании через них луча света. Это явление называют эффектом Тиндаля. Более крупные, чем в истинном растворе, частицы дисперсной фазы золя отражают свет от своей поверхности, и наблюдатель видит в сосуде с коллоидным раствором светящийся конус. В истинном растворе он не образуется. Аналогичный эффект, но только для аэрозольного, а не жидкого коллоида, вы можете наблюдать в лесу и в кинотеатрах при прохождении луча света от киноаппарата через воздух кинозала.

Пропускание луча света через растворы:

а – истинный раствор хлорида натрия;

б – коллоидный раствор гидроксида железа (III).

Частицы дисперсной фазы коллоидных растворов нередко не оседают даже при длительном хранении из-за непрерывных соударений с молекулами растворителя за счет теплового движения. Они не слипаются и при сближении друг с другом из-за наличия на их поверхности одноименных электрических зарядов. Это объясняется тем, что вещества в коллоидном, т.е., в мелкораздробленном, состоянии обладают большой поверхностью. На этой поверхности адсорбируются либо положительно, либо отрицательно заряженные ионы. Например, кремниевая кислота адсорбирует отрицательные ионы SiO32-, которых в растворе много вследствие диссоциации силиката натрия:

Частицы же с одноименными зарядами взаимно отталкиваются и поэтому не слипаются.

Но при определенных условиях может происходить процесс коагуляции. При кипячении некоторых коллоидных растворов происходит десорбция заряженных ионов, т.е. коллоидные частицы теряют заряд. Начинают укрупняться и оседают. Тоже самое наблюдается при приливании какого-либо электролита. В этом случае коллоидная частица притягивает к себе противоположно заряженный ион и ее заряд нейтрализуется.

Коагуляция – явление слипания коллоидных частиц и выпадения их в осадок – наблюдается при нейтрализации зарядов этих частиц, когда в коллоидный раствор добавляют электролит. При этом раствор превращается в суспензию или гель. Некоторые органические коллоиды коагулируют при нагревании (клей, яичный белок) или при изменении кислотно-щелочной среды раствора.

2. Гели или студни представляют собой студенистые осадки, образующиеся при коагуляции золей. К ним относят большое количество полимерных гелей, столь хорошо известные вам кондитерские, косметические и медицинские гели (желатин, холодец, мармелад, хлеб, мясо, джем, желе, мармелад, кисель, сыр, творог, простокваша, торт “Птичье молоко”) и конечно же бесконечное множество природных гелей: минералы (опал), тела медуз, хрящи, сухожилия, волосы, мышечная и нервная ткани и т.д. Историю развития на Земле можно одновременно считать историей эволюции коллоидного состояния вещества. Со временем структура гелей нарушается (отслаивается) – из них выделяется вода. Это явление называют синерезисом.

Студни − это структурированные системы со свойствами эластичных твердых тел. Студнеобразное состояние вещества можно рассматривать как промежуточное между жидким и твердым состоянием.

Студни высокомолекулярных веществ могут быть получены в основном двумя путями: методом образования студней из растворов полимеров и методом набухания сухих высокомолекулярных веществ в соответствующих жидкостях.

Процесс перехода раствора полимера или золя в студень называется студнеобразованием. Студнеобразование связано с увеличением вязкости и замедлением броуновского движения и заключается в объединении частиц дисперсной фазы в форме сетки или ячеек и связывании при этом всего растворителя.

На процесс студнеобразования существенно влияет природа растворенных веществ, форма их частиц, концентрация, температура, время процесса и примеси других веществ, особенно электролитов.

На основании свойств студни делят на две большие группы:

а) эластичные, или обратимые, получаемые из высокомолекулярных веществ;

б) хрупкие, или необратимые, получаемые из неорганических гидрофобных золей.

Как уже говорилось, студни высокомолекулярных веществ могут быть получены не только методом студнеобразования растворов, но и методом набухания сухих веществ. Ограниченное набухание заканчивается образованием студня и не переходит в растворение, а при неограниченном набухании студень - промежуточная стадия на пути к растворению.

Для студней характерен ряд свойств твердых тел: они сохраняют форму, обладают упругими свойствами и эластичностью. Однако их механические свойства определяются концентрацией и температурой.

При нагревании студни переходят в вязкотекучее состояние. Этот процесс называется плавлением. Он обратим, так как при охлаждении раствор снова образовывает студень.

Многие студни способны разжижаться и переходить в растворы при механическом воздействии (перемешивание, встряхивание). Этот процесс обратим, так как в состоянии покоя через некоторое время раствор образовывает студень. Свойство студней многократно изотермически разжижаться при механических воздействиях и образовывать студень в состоянии покоя называется тиксотропией. К тиксотропным изменениям способны, например, шоколадная масса, маргарин, тесто.

Имея в своем составе огромное количество воды, студни, кроме свойств твердых тел, обладают и свойствами жидкого тела. В них могут протекать различные физико-химические процессы: диффузия, химические реакции между веществами.

Свежеприготовленные студни с течением времени подвергаются изменениям, так как процесс структурирования в студне продолжается. При этом на поверхности студня начинают появляться капельки жидкости, которые, сливаясь, образуют жидкую среду. Образующаяся дисперсионная среда является разбавленным раствором полимера, а дисперсная фаза – студнеобразная фракция. Такой самопроизвольный процесс разделения студня на фазы, сопровождающийся изменением объема студия, называет синерезисом (отмоканием).

Синерезис рассматривается как продолжение процессов, обусловливающих образование студня. Скорость синерезиса различных студней различна и зависит в основном от температуры и концентрации.

Синерезис у студней, образованных полимерами, частично обратим. Иногда достаточно нагревания, чтобы студень, претерпевший синерезис, вернуть в исходное состояние, В кулинарной практике этим способом пользуются, например, для освежения каш, пюре, черствого хлеба. Если при хранении студней возникают химические процессы, то синерезис усложняется и его обратимость теряется, происходит старение студня. При этом студень теряет способность удерживать связанную воду (черствение хлеба). Практическое значение синерезиса довольно велико. Чаще всего синерезис в быту и промышленности нежелателен. Это черствение хлеба, отмокание мармелада, желе, карамели, фруктовых джемов.

5. Растворы высокомолекулярных веществ.

Полимеры, подобно низкомолекулярным веществам, в зависимости от условий получения раствора (природа полимера и растворителя, температура и др.) могут образовывать как коллоидные, так и истинные растворы. В связи с этим принято говорить о коллоидном или истинном состоянии вещества в растворе. Мы не будем касаться систем «полимер – растворитель» коллоидного типа. Рассмотрим только растворы полимеров молекулярного типа. Следует отметить, что вследствие больших размеров молекул и особенностей их строения, растворы ВМС обладают рядом специфических свойств:

1. Равновесные процессы в растворах ВМС устанавливаются медленно.

2. Процессу растворения ВМС, как правило, предшествует процесс набухания.

3. Растворы полимеров не подчиняются законам идеальных растворов, т.е. законам Рауля и Вант-Гоффа.

4. При течении растворов полимеров возникает анизотропия свойств (неодинаковые физические свойства раствора в разных направлениях) за счет ориентации молекул в направлении течения.

5. Высокая вязкость растворов ВМС.

6. Молекулы полимеров, благодаря большим размерам, проявляют склонность к ассоциации в растворах. Время жизни ассоциатов полимеров более длительное, чем ассоциатов низкомолекулярных веществ.

Процесс растворения ВМС протекает самопроизвольно, но в течение длительного времени, и ему часто предшествует набухание полимера в растворителе. Полимеры, макромолекулы которых имеют симметричную форму, могут переходить в раствор, предварительно не набухая. Например, гемоглобин, печеночный крахмал – гликоген при растворении почти не набухают, а растворы этих веществ не обладают высокой вязкостью даже при сравнительно больших концентрациях. В то время, как вещества с сильно асимметрическими вытянутыми молекулами при растворении очень сильно набухают (желатин, целлюлоза, натуральный и синтетические каучуки).

Набухание – это увеличение массы и объема полимера за счет проникновения молекул растворителя в пространственную структуру ВМС.

Различают два вида набухания: неограниченное, заканчивающееся полным растворением ВМС (например, набухание желатины в воде, каучука в бензоле, нитроцеллюлозы в ацетоне) и ограниченное, приводящее к образованию набухшего полимера – студня (например, набухание целлюлозы в воде, желатина в холодной воде, вулканизованного каучука в бензоле).



Дата добавления: 2017-05-02; просмотров: 19332;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.022 сек.