Интегративные феномены в ЦНС.


Посттетаническая потенциация. Раздражая афферентный нерв стимулами редкой частоты, можно получить некоторый рефлекс определенной интенсивности. Если затем этот нерв в течение некоторого времени подвергать высокочастотному раздражению (300 – 400 стимулов в с), то повторное редкое ритмическое раздражение приведет к резкому усилению реакции.

Окклюзия (закупорка). Если 2 нервных центра рефлекторных реакций имеют частично перекрываемые рецептивные поля, то при совместном раздражении обоих рецептивных полей реакция будет меньше, чем арифметическая сумма реакций при изолированном раздражении каждого из рецептивных полей. Прим., 1-й нейрон активирует 10 мышечных волокон, развивается мышечное напряжение 100 мгс. 2-й нейрон возбуждает также 10 других волокон (100 мгс). Но если оба нейрона возбуждать одновременно, то суммарная активность мышцы 180 мгс. Часть волокон были общими (т.е. нейрон 1 и 2 передавали информацию на одни и те же волокна).

Облегчение. В ряде случаев при совместном раздражении рецептивных полей двух рефлексов вместо ослабления (окклюзии) наблюдается облегчение (т.е. суммарная реакция выше суммы реакции при изолированном раздражении этих рецептивных полей). Часть общих для обоих рефлексов нейронов при изолированном раздражении оказывают подпороговый эффекты. При совместном раздражении они суммируются и достигают пороговой силы.

 

Торможение.

Торможение в ЦНС – активный процесс, проявляющийся в подавлении или в ослаблении процесса возбуждения. Т.е. в норме торможение является производным от возбуждения, ограничивая и препятствуя его чрезмерному распространению. Процесс торможения вместе с процессом возбуждения формируют сложную мозаику активированных и заторможенных зон в центральных нервных структурах.

История развития учения о тормозных процессах начинается с открытия И.М. Сеченовым центрального торможения. Химическое раздражение кристаллами соли зрительных бугров вызывало удлинение времени сгибательного рефлекса по методике Тюрка (сгибание конечности в тазобедренном и коленном суставах в ответ на погружение лапы в кислоту).

Гольц получил «периферическое торможение», применяя дополнительные раздражители периферии (конечности).

Возникло предположение о существовании специфических тормозных нейронов, оказывающих тормозные влияния на другие нейроны. Впоследствии было показано (Экклс, Реншоу) существование специальных вставочных нейронов, имеющих синаптические контакты с другими нейронами и оказывающих на них тормозное влияние. Некоторые из этих клеток имеют «собственное» имя, например клетки Реншоу. Результатом деятельности тормозных нейронов может быть не только торможение нейронов. В коре и гиппокампе есть тормозные нейроны, вызывающие торможение других тормозных нейронов и, вследствие этого, растормаживающий эффект.

Если рассмотреть «архитектуру» использования тормозных нейронов в организации нейронных цепей, то можно выделить ряд вариантов:

1) Реципрокноеторможение. Пример: сигнал от мышечного веретена поступает с афферентного нейрона в спинной мозг, где переключается на альфа-мотонейрон сгибателя и одновременно на тормозной нейрон, который тормозит активность альфа-мотонейрона разгибателя (Ч. Шеррингтон);

2) Возвратное(антидромное)торможение. Угнетение активности нейрона вызывается возвратной коллатералью аксона, заканчивающейся на тормозном нейроне, аксон которого оказывает тормозное действие. Пример: альфа-мотонейрон посылает аксон к соответствующим мышечным волокнам. По пути от аксона отходит коллатераль, которая возвращается в ЦНС – она заканчивается на тормозном нейроне (клетка Реншоу) и активирует ее. Тормозной нейрон вызывает торможение альфа-мотонейрона, который запустил всю эту цепочку. Таким образом, альфа-мотонейрон, активируясь, через систему тормозного нейрона тормозит сам себя;

3) Латеральноеторможение (вариант возвратного торможения). Пример: Фоторецептор активирует биполярную клетку и, одновременно, рядом расположенный тормозной нейрон, блокирующий проведение возбуждения от соседнего фоторецептора к ганглиозной клетке («вытормаживание информации» - 2 точки на сетчатке рассматриваются как раздельные точки, если между ними есть невозбужденные участки).

Механизмы торможения.

Различают несколько видов торможения: постсинаптическое, пресинаптическое, пессимальное (рис. 16).

Постсинаптическоеторможение – развивается на ПСМ аксосоматических и аксодендритических синапсов под влиянием тормозных нейронов, у которых из концевых разветвлений аксонных отростков в синаптическую щель высвобождается тормозной медиатор (например, ГАМК или глицин). Медиатор вызывает на ПСМ эффект гиперполяризации в виде ТПСП, а пространственно-временная суммация ТПСП приводит к урежению или прекращению генерации ПД в результате снижения возбудимости нейрона. Это основной вид торможения.

Пресинаптическоеторможение – развертывается в аксоаксональных синапсах, блокируя распространение возбуждения по аксону. Процесс торможения здесь протекает по типу катодической депрессии: в области контакта выделяется медиатор (ГАМК), который вызывает стойкую деполяризацию, что нарушает проведение волны возбуждения через этот участок. Является наиболее избирательным видом торможения, т.к. выключает отдельные входы к нервной клетке.

Блокатором ГАМК-ергических рецепторов мембраны является бикукулин, а глициновых рецепторов – стрихнин и столбнячный токсин.

Эти два вида торможения, возникающие в результате деятельности тормозных нейронов, относят к первичному торможению (Дж. Экклс).

Пессимальное(вторичное) торможение – вид торможения центральных нейронов, наступает при высокой частоте раздражения. В первый момент возникает высокая частота ответного возбуждения, однако через некоторое время стимулируемый в таком режиме нейрон переходит в состояние торможения.

 

 

Рис. 16. Виды внутрицентрального торможения.

2.2.4. Принципы координации в деятельности ЦНС.

Конвергенция (концентрация). Ч. Шеррингтон называл этот принцип - «принципом общего конечного пути». Многие нейроны оказывают свое воздействие на один и тот же нейрон, т.е. имеет место схождение потоков импульсов к одному и тому же нейрону. Прим., сокращение мышцы (за счет возбуждения альфа-мотонейрона) можно вызвать за счет растяжения мышцы (рефлекс мышечных веретен) или путем раздражения кожных рецепторов (сгибательный рефлекс).

Дивергенция. Способность нервной клетки устанавливать многочисленные синаптические связи с различными нервными клетками. Обеспечивает иррадиацию возбуждения в центральных нервных образованиях. Тормозные процессы ограничивают дивергенцию и делают процессы управления более точными. Когда торможение снимается (например, при столбняке), происходит полная дискоординация в деятельности ЦНС.

Принцип реципрокной иннервации (см. – реципрокное торможение).

Принцип обратной связи и копий эфферентаций. Невозможно точно координировать, управлять, если отсутствуют данные о результатах управления. Осуществляется за счет потока импульсов с рецепторов. Копия эфферентации: Для управления важно иметь информацию о командах, посылаемых на периферию. Например, в системах управляющих скелетными мышцами, каждый отдел, посылая сигнал управления к работающей мышце, одновременно сообщает об этом вышележащему отделу (вариант обратной связи).

Принцип доминантыоткрыт А.А.Ухтомским. Изучая ответы скелетной мышцы кошки на электрические раздражения КБП, он обнаружил, что при акте дефекации ответы мышцы прекращаются. Он пришел к выводу, что среди рефлекторных актов, которые могут быть выполнены в данный момент времени, имеются рефлексы, реализация которых является в данный момент времени важнейшей для организма. Центры, участвующие в реализации доминантных рефлексов он назвал «доминантным очагом возбуждения». Свойства доминантного очага: он стойкий (его трудно затормозить); интенсивность его возбуждения усиливается слабыми раздражителями; этот очаг тормозит другие потенциальные доминантные очаги. Доминантность того или иного очага определяется состоянием организма (у голодного животного доминируют пищевые рефлексы).

Принцип системности. Развитием представления о доминанте являются работы П.К. Анохина о функциональной системе.

Рефлекторные реакции протекают не изолированно, а всегда объединяются в систему. Любая функциональная система всегда формируется и функционирует для достижения организмом конкретных приспособительных результатов (главный системообразующий фактор – конечный результат действия). Любая рефлекторная реакция многокомпонентная и протекает в 4 стадии.

1 стадия – афферентный синтез. На организм действует огромное количество раздражителей – это обстановочная афферентация. Есть аппарат памяти – прошлый опыт, аппарат мотиваций – побуждение к деятельности. Происходит их суммация и выделяется главный раздражитель – пусковая афферентация.

2 стадия – принятие решения. На организм действуют те же раздражители: возбужден аппарат памяти, мотиваций, выделена пусковая афферентация. Происходит принятие решения, это переломный момент в любой рефлекторной реакции.

3 стадия – эфферентный синтез. Возбужден аппарат памяти, мотиваций, выделена пусковая афферентация, принято решение. Формируется 2 функциональных аппарата: 1) программа действия - что, как и в какой последовательности нужно делать для достижения конечного приспособительного результата; 2) акцептор результата действия (АРД) - является аппаратом предвидения, предугадывания. Формируется на основе решения и программы действия. Стадия заканчивается началом действия.

4 стадия – обратной афферентации. АРД является аппаратом сравнения задуманного с полученным. Параметры результата действия поступают в АРД, который необходим для контроля и исправления ошибок в наших действиях. Совпадение задуманного с полученным сопровождается положительными эмоциями, при несовпадении – отрицательными эмоциями. В последнем случае вносятся поправки и система запускается повторно.

Принцип пластичности. При повреждении отдельных центров мозга их функция может перейти к другим структурам мозга (если не связано с наступлением смерти, как при нарушении дыхательного центра). Процесс возмещения утраченных функций осуществляется при обязательном участии КБП.

Принцип иерархичности. Принцип субординации или соподчинения. Подчинение низших отделов нервной системы высшим (филогенетически ранних более поздним). Цефализация нервной системы и ее управляющей функции (проявляется в перемещении, сосредоточении функции регуляции и координации деятельности организма в головных отделах ЦНС). Высшее проявление – кортикализация функций. В КБП имеются нейронные комплексы (ансамбли), отвечающие за все функции организма. Высшие нервные центры выступают уже регуляторами регуляторов. При всей сложности взаимоотношений между старыми, древними и эволюционно новыми образованиями мозга общая схема следующая: восходящие влияния (от нижележащих старых структур к вышележащим новым) преимущественно возбуждающего, стимулирующего характера, а нисходящие - преимущественно угнетающего, тормозного характера. Т.е. в процессе эволюции повышается роль и значенияетормозных процессов в осуществлении сложных интегративных рефлекторных реакций.

Принцип иерархичности проявляется и в общей закономерности расположения нейронов в ЦНС:

- спинной мозг – «ядра» на всем протяжении;

- продолговатый – крупные ядра;

- гипоталамус – много мелких ядер;

- КБП – слои нервных клеток.

Чем сложнее функция, тем упорядоченнее расположение нервных клеток. Благодаря принципу иерархичности:

1) Расширяются возможности целостного организма, возможна более тонкая, дифференцированная регуляция функций;

2) Повышается коррекция результатов деятельности многих органов, в том числе и анализаторов.

Принцип целостности. Органически сочетается с принципами иерархичности и системности. Подразумевает функционирование всех звеньев или этажей ЦНС.

СПИННОЙ МОЗГ

Характерной чертой организации спинного мозга (СМ) является периодичность его структуры в форме сегментов, имеющих входы в виде задних корешков, клеточную массу нейронов (серое вещество) и выходы в виде передних корешков.



Дата добавления: 2017-03-12; просмотров: 1493;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.012 сек.