Процесс сгорания топливной смеси в дизеле
Для осуществления действительного цикла в дизелях в воздушный заряд, сжатый до давления 2,5—5 МПа и имеющий температуру 750—1000 К, впрыскивается топливо под давлением от 40 до 100 МПа (в зависимости от типа камеры сгорания).
Для эффективного протекания горения топливо должно находиться в парообразном состоянии, но из-за недостатка времени на смесеобразование часть топлива не успевает испариться и находится в начале горения в капельно-жидком состоянии. Поэтому процессы воспламенения и сгорания в этом случае — сложные процессы, и включают в себя физико-химическую подготовку топлива, воспламенение и горение.
Первые очаги пламени появляются одновременно в нескольких точках камеры сгорания. Возникновение этих очагов вызывает нагрев близлежащих участков смеси и общий рост температуры, что вызывает испарение остальных частиц топлива и протекание предпламенных процессов в образующейся горючей смеси. Многоочаговое воспламенение вызывает большую скорость сгорания в начальный период и образующееся пламя практически мгновенно воспламеняет часть поступающего топлива. Однако условия горения этого топлива менее благоприятны из-за недостатка кислорода. Особенно это характерно для последней части впрыскиваемого топлива.
Если учесть характер и интенсивность тепловыделения, изменение температуры и давления в цилиндре в разные моменты времени, то весь процесс горения можно условно разделить на четыре фазы (рис. 15).
Рис. 15. Индикаторная диаграмма и зависимость изменения температуры газов
от угла поворота коленчатого вала в цилиндре дизеля
Первая фаза горения (θ1) — задержка воспламенения, начинается с момента поступления топлива (точка 1) и заканчивается в момент отрыва кривой сгорания от линии сжатия (точка 2). Впрыск топлива происходит до прихода поршня в ВМТ. Угол опережения впрыска топлива находится в пределах 20—35° поворота коленчатого вала.
Во время впрыска струя топлива, выходящая из форсунки под большим давлением, разбивается о плотные слои воздуха на мельчайшие капли, образуя факел распыления. При этом завихрения, которые придаются заряду сжимаемого воздуха, влияние на развитие этого факела оказывают существенное (рис. 16).
Рис. 16. Развитие топливных струй в заряде: а — неподвижном;
б — движущимся со скоростью 15 м/с; в — движущимся со скоростью 35 м/с
Концентрация топлива в таком факеле изменяется по поперечному сечению и длине. В ядре факела находятся наиболее крупные, а на периферии — наиболее мелкие капли, находящиеся друг от друга на значительных расстояниях. Следовательно, структура рабочей смеси в дизелях крайне неоднородна, поэтому здесь коэффициент избытка воздуха обычного смысла лишен, так как он не дает представления о действительном составе смеси.
Локальные значения коэффициента избытка воздуха по различным зонам камеры сгорания могут меняться от 0 (жидкие капли) до ∞ (воздух). Именно наличие всей гаммы составов смеси и температур определяет возможность воспламенения в среднем очень бедной смеси, например, при α = 6 и более.
Таким образом, период задержки воспламенения включает в себя время, необходимое для распада струй на капли, некоторого продвижения капель по объему камеры сгорания, прогрева, частичного испарения и смешения топливных паров с воздухом, а также время саморазгона химических реакций.
Если период задержки воспламенения больше продолжительности впрыска, то все топливо оказывается поданым в цилиндр до начала воспламенения. При этом большая часть его успевает испариться и смешаться с воздухом. В результате объемного воспламенения этой части топлива в цилиндре развивается резкое повышение давления с высокими динамическими нагрузками на детали и повышенным уровнем шума. Поэтому длительный период задержки воспламенения нежелателен.
Продолжительность первой фазы сгорания составляет 1—3 мс, что соответствует 12—25° поворота коленчатого вала.
На продолжительность первой фазы сгорания влияют следующие факторы:
1. Воспламеняемость топлива, которая оценивается цетановым числом. Чем выше цетановое число, тем лучше воспламеняемость.
2. Давление и температура воздушного заряда в начале впрыска топлива. При увеличении давления и температуры период задержки воспламенения сокращается.
3. Тип камеры сгорания (рис. 17), который оказывает влияние на задержку воспламенения, так как в зависимости от типа камеры по разному будет проходить распространение топлива по объему воздушного заряда и в пристеночной зоне. Кроме того температура стенок камеры сгорания также будет зависеть от ее типа.
4. Интенсивность направленного движения заряда в камере. Увеличение интенсивности движения заряда несколько сокращает период задержки воспламенения. На рис. 18 показаны способы создания вихревого движения заряда в цилиндре при впуске.
5. Тип распылителя форсунки. Форсунка закрытого типа сокращает период задержки воспламенения.
Рис. 17. Различные конструкции камер сгорания в поршне:
а — полусферическая (дизели ВТЗ); б — четырехтактного дизеля ЯМЗ;
в — дизеля ЦНИДИ; г — дизеля фирмы «МАНН»; д — дизеля фирмы «Дойтц»;
е — дизеля фирмы «Гессельманн»; ж — дизеля фирмы «Даймлер-Бенц»;
δНЗ — надпоршневой зазор
Рис. 18. Способы создания вихревого движения заряда в цилиндре при впуске:
а — тангенциальный впускной канал; б — клапан с экраном;
в — тангенциальные продувочные окна двухтактного дизеля;
г — винтовой канал; д — экран на седле клапана
Разделенные камеры сгорания имеют основную и вспомогательную полости, соединенные горловиной. В настоящее время применяют в основном вихревые камеры сгорания и предкамеры (рис. 19), где ось соединительной горловины направлена по касательной к внутренней поверхности камеры сгорания. Разделенные камеры сгорания обеспечивают более полное сгорание топлива и менее жесткую работу за счет сокращения времени задержки воспламенения.
Рис. 19. Разделенные камеры сгорания: a — вихревая
(на верхней проекции показано направление перетекания заряда из основной полости в вихревую камеру при сжатии, на нижней — из вихревой камеры
в основную при расширении); б — предкамера; в — вихревая типа «Пинтакс»;
г — предкамера малого перепада давления дизеля MWM
6. Нагрузка. С ростом нагрузки увеличивается давление и температура цикла, что приводит к повышению теплового режима двигателя, а это в свою очередь вызывает сокращение времени задержки воспламенения.
7. Частота вращения коленчатого вала. Увеличение частоты вращения коленчатого вала приводит к улучшению распыления, увеличению давления и температуры конца сжатия, что способствует сокращению первой фазы горения, особенно в дизелях с разделенными камерами сгорания. Продолжительность первой фазы горения при этом растет.
Вторая фаза горения (θ2) — самовоспламенение и быстрое горение начинается с момента воспламенения (см. рис. 15, точка 2) и заканчивается в момент достижения максимального давления в цилиндре (точка 3). В первую очередь сгорают однородные слои смеси топлива и воздуха хорошо перемешанные между собой. При этом пламя распространяется очень быстро, соответственно быстро растет Давление, в определенных случаях с образованием ударной волны, распространяющейся со скоростью звука. Но в отличие от карбюраторных двигателей в дизелях эти волны не переходят в детонационные, так как структура смеси по всему объему камеры сгорания неравномерна. Это позволяет получать более высокую степень сжатия.
После того, как сгорит хорошо подготовленная к воспламенению топливовоздушная смесь, горение продолжается в зонах, где структура смеси более неравномерна. Здесь на индикаторной диаграмме наблюдается некоторый спад роста давления.
В течение второй фазы выделяется 30—45 % всей теплоты. Температура рабочего тела возрастает до 1600—1800 К. Максимальное давление может достичь 6—9 МПа, а при наддуве превысить 10 МПа. Продолжительность второй фазы 0,8—1,5 мс, что соответствует 10—20° поворота коленчатого вала.
На развитие и продолжительность второй фазы влияют следующие факторы:
1. Количество топлива, прошедшего предпламенную подготовку за период задержки воспламенения и сгорающее с большой скоростью. Чем больше подача топлива и мельче распыление, тем интенсивнее тепловыделение и рост давления.
2. Тип камеры сгорания. Влияние конструкции камеры на первую фазу горения приводит к определенному развитию и второй фазы, так как определяет количество топливовоздушной смеси, подготовленной к воспламенению в течение первой фазы.
3. Нагрузка. С уменьшением нагрузки продолжительность второй фазы горения сокращается, так как уменьшается величина впрыскиваемой порции топлива и время его подачи.
4. Частота вращения коленчатого вала. При росте частоты вращения коленчатого вала улучшается качество распыления, сокращается продолжительность впрыска, растет давление и температура заряда. Все это приводит к сокращению второй фазы горения.
Третья фаза горения (θ3) — характеризуется плавным изменением давления. Началом этой фазы считается конец второй фазы (точка 3), а окончанием — момент, соответствующий достижению максимальной средней температуры газов в цилиндре (точка 4). К началу третьей фазы все несгоревшее топливо, поданное в цилиндр во время первых двух фаз, находится в виде капель или сгустков паров, которые отделены от зон со свободным кислородом фронтом пламени или продуктами горения. В результате происходит термическое разложение капель топлива (крекинг) с образованием частиц углерода в виде сажи, которая, покидая цилиндр вместе с отработавшими газами, вызывает сильное дымление на выпуске. Горение продолжается при увеличивающемся объеме камеры, поэтому давление плавно понижается.
За время третьей фазы выделяется 25—30 % теплоты, поэтому температура продолжает повышаться, достигая в конце фазы 1800—2200 К. Продолжительность третьей фазы — 1—2 мс, что соответствует 15—25° поворота коленчатого вала.
На развитие третьей фазы оказывают влияние следующие факторы:
1. Качество распыления и количество топлива, впрыскиваемого после начала сгорания. Чем меньше подано топлива до начала третьей фазы горения, тем меньше будет выделено теплоты в этой фазе, что характерно для работы дизеля на малых нагрузках.
2. Скорость движения воздушного заряда. Рост скорости движения заряда увеличивает тепловыделение, но это происходит до определенного момента. При чрезмерном завихрении заряда тепловыделение в третьей фазе снижается, так как в этом случае продукты сгорания из зоны одного факела попадают в зону другого, увеличивая неполноту сгорания.
3. Частота вращения коленчатого вала. С ростом частоты вращения коленчатого вала скорость движения заряда увеличивается,а распыление улучшается. Продолжительность третьей фазы сокращается.
Четвертая фаза горения (θ4) — догорание начинается в момент достижения максимальной температуры и продолжается в течение всего времени догорания топлива. В течение этой фазы догорает топливо, не успевшее сгореть в третьей фазе, причем происходит это в условиях недостатка кислорода, так как значительное его количество уже израсходовано. Поэтому догорание протекает медленно.
За время четвертой фазы при полной нагрузке дизеля выделяется 15—25 % теплоты. Таким образом, общее количество тепловыделения к концу четвертой фазы оставляет 90—95 %. Остальные 5—10 % теряются вследствие неполноты сгорания топлива. Продолжительность четвертой фазы 3,5—5 мс, что соответствует 50—60° поворота коленчатого вала.
На развитие четвертой фазы горения оказывают влияние следующие факторы:
1. Турбулентное движение заряда, которое улучшает контакт топлива и воздуха и, следовательно, улучшает догорание.
2. Качество распыления в конце подачи топлива. Чем больше диаметр капель, тем продолжительнее процесс догорания. Нечеткость отсечки топлива в конце впрыска, как и продолжительное снижение давления в конце впрыска не только снижают тепловыделение, но и вызывают закоксовывание сопел форсунок.
3. Попадание топлива на холодные стенки внутрицилиндрового пространства приводит к увеличению времени догорания, поэтому увеличение нагрузки дизеля до его прогрева нежелательно.
4. Наддув. Используя наддув, увеличивают количество подаваемого топлива, в том числе и путем затяжного впрыска, что приводит к увеличению времени догорания.
Дата добавления: 2017-02-13; просмотров: 2133;