Индуктивное сопротивление синхронной машины
Результирующий магнитный поток машины условно можно разделить на три составляющие: основной магнитный поток , поток рассеяния и поток реакции якоря . Основной магнитный поток наводит в обмотке статора ЭДС . Эта ЭДС представлена характеристикой холостого хода (рис. 11.20). Потоки и создаются током статора и пропорциональны ему. В обмотке статора эти потоки наводят ЭДС самоиндукции
,
где – индуктивность рассеяния и индуктивность реакции якоря.
В расчетах ЭДС и учитываются как падения напряжений на индуктивном сопротивлении рассеяния и на индуктивном сопротивлении реакции якоря . Сумму сопротивлений называют синхронным индуктивным сопротивлением. Такое определение соответствует неявнополюсным машинам. Для явнополюсных машин этот параметр разделяют по осям и различают индексами – продольное синхронное индуктивное сопротивление , поперечное синхронное индуктивное сопротивление , причем .
Синхронное индуктивное сопротивление в сотни раз больше активного сопротивления обмотки статора. В дальнейшем будем считать R = 0 и использовать параметр .
11.20. Схема замещения и упрощенная векторная диаграмма
ЭДС и МДС синхронного генератора
Схема замещения синхронного генератора с учетом принятых допущений представлена на рис. 11.22 в виде источника ЭДС с внутренним сопротивлением . Сопротивление нагрузки .
Уравнение цепи по второму закону Кирхгофа
.
Отсюда напряжение
. (11.52)
. (11.53)
Уравнениям (11.52) и (11.53) соответствует векторная
диаграмма ЭДС на рис. 11.23.
Рис. 11.23
Ток статора отстает от ЭДС на угол , определяемый соотношением индуктивных и активных сопротивлений
.
Сдвиг вектора тока по отношению к вектору напряжения определяется параметрами нагрузки
.
Взаимосвязь векторов и осуществляется через вектор падения напряжения , который строится под углом 90° к вектору . На этом же рисунке построена векторная диаграмма МДС. Вектор МДС ротора опережает вектор на 90°, вектор МДС якоря , приведенный к ротору, совпадает по фазе с током , а результирующая МДС опережает вектор напряжения на 90°.
Из диаграмм МДС и ЭДС следует, что режим работы синхронного генератора характеризуется углом между вектором напряжения и ЭДС и равным ему углом между результирующим магнитным потоком и потоком ротора . Это означает, что у генератора полюсы ротора вращаются впереди полюсов поля статора с опережением на угол .
11.21. Характеристики синхронного генератора при автономной
работе
Характеристика холостого хода была рассмотрена в параграфе 11.17.
Характеристика короткого замыкания представляет собой зависимость при U = 0 и . При допущении R = 0 из (11.52) следует, что ток короткого замыкания является чисто индуктивным и по модулю равен
. (11.54)
При коротком замыкании реакция якоря является размагничивающий, результирующий магнитный поток мал, магнитная цепь ненасыщена и характеристика короткого замыкания прямолинейна (рис. 11.24).
Следует отметить, что в (11.54) и числитель и знаменатель пропорциональны частоте вращения и поэтому характеристики короткого замыкания не зависят от частоты вращения, за исключением малых скоростей, когда оказывает влияние активное сопротивление обмотки статора.
Внешняя характеристика. Это зависимость напряжения генератора от тока нагрузки при , . Если принять начальное напряжение , то вид внешних характеристик будет соответствовать рис. 11.25. При активно-индуктивной нагрузке ( < 1) поток реакции якоря размагничивает машину и напряжение уменьшается с увеличением тока нагрузки по кривой 1. При активной нагрузке ( = 1,0) поперечная реакция якоря также вызывает уменьшение напряжения (кривая 2). При активно-емкостной нагрузке продольная намагничивающая реакция увеличивает ЭДС , следовательно, и напряжение (кривая 3).
Рис. 11.24 | Рис. 11.25 |
Регулировочная характеристика представляет собой зависимость при , , . Вид семейства регулировочных характеристик показан на рис. 11.26, а их физический смысл объясняется действием реакции якоря при различном характере нагрузки. Обычно номинальным режимом работы генератора является = 0,8 (при индуктивной нагрузке). В этом случае для поддержания при переходе от холостого хода ( ) к номинальной нагрузке ( ) необходимо увеличить ток возбуждения в 1,7...2,2 раза.
Дата добавления: 2017-01-16; просмотров: 6290;