Спектральный диапазон электромагнитного излучения Солнца


 

Спектральный диапазон электромагнитного излучения Солнца очень широк — от радиоволн до рентгеновских лучей. Однако максимум его интенсивности приходится на видимую (жёлто-зелёную) часть спектра.

 

 

Рис. 4.5. Спектр излучения Солнца, наблюдаемый выше атмосферы Земли и на уровне моря

Особый интерес представляет часть солнечного спектра, включающая электромагнитные поля и излучения с длиной волны выше 100 нм. В этой части солнечного спектра различают три вида излучения:

- ультрафиолетовое (УФ) – с длиной волны 290-400 нм;

- видимое - с длиной волны 400-760 нм;

- инфракрасное (ИК) – с длиной волны 760-2800 нм.

Солнечные лучи, прежде чем достигнуть земной поверхности, должны пройти сквозь мощный слой атмосферы. Солнечное излучение поглощается, рассеивается водяными парами, молекулами газов, частицами пыли и т. д. Около 30 % солнечной радиации не достигает земной поверхности. Так, если на границе земной атмосферы ультрафиолетовая часть солнечного спектра составляет 5 %, видимая часть - 52 % и инфракрасная часть - 43 %, то у поверхности Земли ультрафиолетовая часть составляет 1 %, видимая - 40 % и инфракрасная часть солнечного спектра - 59 %. Некоторые источники информации дают несколько иную картину распределения энергии солнечной радиации на уровне земли: ультрафиолетовое излучение – около 2%, видимая часть спектра – около 49% и инфракрасная зона – тоже около 49%.

Интенсивность солнечной радиации на поверхности Земли всегда будет меньше уровня солнечной радиации на границе земной атмосферы. Наличие облачного покрова, загрязнения воздуха, дымки или даже рассеянных облаков играет значительную роль в ослаблении солнечного излучения. Зависимость мощности ФЭП от погодных условий представлена на рис. 4. 6 .

Рис. 4. 6. Зависимость мощности ФЭП от погодных условий

 

При сплошном покрытии неба облаками интенсивность УФ-излучения снижается на 72 %, при половинном покрытии облаками - на 44 %, в экстремальных условиях - более чем на 90 %. Озон и кислород полностью поглощают коротковолновое УФ-излучение (длина волны 290-100 нм), предохраняя все живое от его пагубного воздействия. Молекулы воздуха рассеивают главным образом ультрафиолетовую и синюю части спектра (отсюда голубой цвет неба), поэтому рассеянная радиация богаче УФ-лучами. Когда Солнце находится низко над горизонтом, лучи проходят больший путь, и рассеяние света, в том числе в УФ-диапазоне, увеличивается. Поэтому в полдень Солнце кажется белым, желтым, а затем и оранжевым, так как в прямых солнечных лучах становится меньше ультрафиолета и синих лучей.

Уровень солнечной радиации оценивается по её интенсивности (ватты на единицу поверхности) и тепловому действию (калории на единицу поверхности за единицу времени.

С учетом спектральных характеристик солнечного излучения и состояния технического прогресса в области солнечной энергетики среди существующих способов преобразования энергии солнца можно выделить следующие наиболее распространенные:

– фотоэлектрический;

– гелиотермальный;

– термовоздушный.

4.2.2. Фотоэлектрические преобразователи солнечной энергии.

 

Принцип действия.Наиболее эффективными с энергетической точки зрения устройствами для превращения солнечной энергии в электрическую являются полупроводниковые фотоэлектрические преобразователи (ФЭП), рис. 4.7.

 

Рис. 4.7. Фотоэлектрические приобразователи энергии

 

Теоретически их предельный коэффициент полезного действия может превышать 90%. Технический прогресс, направленый на снижение необратимых потерь энергии путем оптимизации состава, структуры и других праметоров ФЭП, уже в ближайшие годы позволить поднять практический КПД до 50% и более при уже достигнутом уровне в лабораториях условиях близком 40%. Следует отметить, что основные потери энергии в ФЭП связаны с:

– отражением солнечного излучения от поверхности преобразователя;

– прохождением части излучения через ФЭП без поглощения в нём;

– рассеянием на тепловых колебаниях решётки избыточной энергии фотонов;

– рекомбинацией образовавшихся фотопар на поверхностях и в объёме ФЭП;

– внутренним сопротивлением преобразователя

– и некоторыми другими физическими процессами.

При фотоэлектрическом преобразовании солнечной энергии используется явление фотоэффекта, открытое Герцем. Фотоэффект (photos - с греч. "свет") возникает в результате воздействия солнечного излучения на поверхностные слои полупроводника толщиной примерно 2-3 мкм, высвобождая при этом некоторое количество электронов. С появлением в теле полупроводника свободных электронов и при наличии разности электрических потенциалов в нем возникает электрический ток. Разность потенциалов образуется между облучаемой поверхностью полупроводника и его "теневой" стороной. Основным материалом для получения солнечных элементов в мире сегодня является кремний. Технически чистый кремний (концентрация примесей <1 к млрд.) (как и германий) является диэлектриком. Удельное сопротивление чистого кремния 2500 Ом-м и разность потенциалов в нем возникнуть не может. Она появляется за счет внедрения в его поверхностные слои специальных добавок. При этом в зависимости от концентрации примесных добавок удельное сопротивление снижается до 1-10 Ом-м. Один вид добавок (донор) в виде тонкого слоя наносится на облучаемую поверхность; он образует дополнительные электроны и, следовательно, отрицательный заряд. Другая примесь (акцептор) наносится на теневую сторону. Акцептор способствует появлению дефицита электронов и, следовательно, положительного заряда Положительный и отрицательный заряд создают разность потенциалов. В роли донора электронов могут выступать атомы мышьяка или фосфора, в роли акцептора - атомы бора или брома. Для замыкания тока на внешнюю цепь используются два электрода. Отрицательный электрод выполняется в виде металлической сетки и накладывается на наружную сторону элемента, на внутреннюю сторону напыляется металл, который выполняет функцию положительного электрода.

Фотовольтаический эффект возникает в неоднородных полупроводниковых структурах при воздействии на них солнечного излучения. Неоднородность структуры ФЭП может быть получена легированием одного и того же полупроводника различными примесями (создание p-n-переходов) или путём соединения различных полупроводников с неодинаковой шириной запрещённой зоны-энергии отрыва электрона из атома (создание гетеропереходов), или же за счёт изменения химического состава полупроводника, приводящего к появлению градиента ширины запрещённой зоны (создание варизонных структур). Возможны также различные комбинации перечисленных способов. Эффективность преобразования зависит от электрофизических характеристик неоднородной полупроводниковой структуры, а также оптических свойств ФЭП, среди которых наиболее важную роль играет фотопроводимость, обусловленная явлениями внутреннего фотоэффекта в полупроводниках при облучении их солнечным светом.

Принцип работы ФЭП можно пояснить на примере преобразователей с p-n-переходом, которые широко применяются в современной солнечной и космической энергетике (рис. 4.8).

 

Рис. 4.8. Принцип работы полупроводниковых фотоэлектрических

преобразователей

 

Электронно-дырочный переход создаётся путём легирования пластинки монокристаллического полупроводникового материала с определённым типом проводимости (т.е. или p- или n-типа) примесью, обеспечивающей создание поверхностного слоя с проводимостью противоположного типа. Концентрация легирующей примеси в этом слое должна быть значительно выше, чем концентрация примеси в базовом (первоначальном монокристалле) материале, чтобы нейтрализовать имеющиеся там основные свободные носители заряда и создать проводимость противоположного знака. У границы n-и p-слоёв в результате перетечки зарядов образуются обеднённые зоны с нескомпенсированным объёмным положительным зарядом в n-слое и объёмным отрицательным зарядом в p-слое. Эти зоны в совокупности и образуют p-n-переход. Возникший на переходе потенциальный барьер (контактная разность потенциалов) препятствует прохождению основных носителей заряда, т.е. электронов со стороны p-слоя, но беспрепятственно пропускают неосновные носители в противоположных направлениях. Это свойство p-n-переходов и определяет возможность получения фото-ЭДС при облучении ФЭП солнечным светом. Созданные светом в обоих слоях ФЭП неравновесные носители заряда (электронно-дырочные пары) разделяются на p-n-переходе: неосновные носители (т.е. электроны) свободно проходят через переход, а основные (дырки) задерживаются. Таким образом, под действием солнечного излучения через p-n-переход в обоих направлениях будет протекать ток неравновесных неосновных носителей заряда- фотоэлектронов и фотодырок, что как раз и нужно для работы ФЭП. Если теперь замкнуть внешнюю цепь, то электроны из n-слоя, совершив работу на нагрузке, будут возвращаться в p-слой и там рекомбинировать (объединяться) с дырками, движущимися внутри ФЭП в противоположном направлении. Для сбора и отвода электронов во внешнюю цепь на поверхности полупроводниковой структуры ФЭП имеется контактная система. На передней, освещённой поверхности преобразователя контакты выполняются в виде сетки или гребёнки, а на тыльной могут быть сплошными.

 

Типы фотоэлектрических преобразователей энергии солнца.Сегодня можно говорить о трех поколениях фотоэлектрических элементов.

К первому поколению, кристаллическому, относят (рис. 4.9):

– монокристаллические кремниевые ФЭП,

– поликристаллические кремниевые и

– технологии выращивания тонкостенных заготовок - EFG (Edge defined film-fed crystal growth technique), - S-web (Siemens), тонкослойный поликремний (Apex).

Рис. 4. 9. Кристаллические ФЭП

 

Основным показателем эффективности фотоэлементов является коэффициент полезного действия - отношение количества энергии, поступившей на фотоэлемент, к количеству энергии, получаемой потребителем.

Фотоэлементы массового производства на основе монокристаллического кремния имеют практический КПД 16 - 17%, использующие поликристаллический кремний - 14 - 15%, аморфный кремний - 8 - 9%.

Второе поколение, тонкоплёночное, позволяет получать электроэнергию используя фотоэлементы (рис. 4.10):

– кремниевые: аморфные, микрокристаллические, нанокристаллические, CSG (crystalline silicon on glass);

– на основе теллурида кадмия (CdTe);

– на основе селенида меди-индия-(галлия) (CI(G)S).

 

 

 

Рис. 4.10. Пленочные ФЭП

 

Технология выпуска тонкопленочных фотоэлектрических преобразователей (ТП ФЭП) второго поколения подразумевает нанесение слоев вакуумным методом. Вакуумная технология по сравнению с технологией производства кристаллических ФЭП является менее энергозатратной, а также характеризуется меньшим объемом капитальных вложений. Она позволяет выпускать гибкие дешевые ФЭП большой площади, однако коэффициент преобразования таких элементов ниже по сравнению с ФЭП первого поколения.

ТП ФЭП разделяются по типу материала на кремниевые и не-кремниевые. Кремниевые ФЭП могут быть однослойными аморфными (они возникли исторически первыми) или более сложной структуры (например, аморфно-микроморфными), появившимися позднее. ТП ФЭП изготавливаются на твердых или гибких подложках. В последние годы распределение производства ФЭП в мире по типам технологий, определила долю кремниевых ФЭП (моно- и мульти-кремниевых) составившую 86% ТП на аморфном кремнии составили 6%. Оставшаяся часть ФЭП производилась в виде тонких пленок таких материалов как теллурид кадмия (CdTe) – 6%, диселенид меди и индия (CIS/CIGS) – 2%.

Основные преимущества ТП ФЭП, по сравнению с кремниевыми кристаллическими ФЭП, состоят в следующем:

– более низкая удельная стоимость;

– более низкий расход материалов;

– возможность производства устройств больших площадей;

– меньшее количество технологических операций;

– способность принимать рассеянный и слабый солнечный свет (когда солнце, скажем, скрыто за облаками) намного более эффективно, чем кристаллические батареи.

ФЭП третьего поколения:

– элементы, фотосенсибилизованные краситилем (dye-sensitized solar cell, DSC) (рис. 4.11);

– органические (полимерные) ФЭП (OPV) (рис. 4.12 и рис. 4.13);

– неорганические ФЭП (CTZSS);

– ФЭП на основе каскадных структур (рис. 4.14).

Рис. 4.11. ФЭП, фотосенсибилизованные краситилем

Рис. 4. 12. Производство органических полимерных ФЭП

Рис. 4.13. Органические полимерные ФЭП

Рис. 4.14 .ФЭП на основе каскадных структур

 

Идея создания ФЭП третьего поколения заключалась в дальнейшем снижении себестоимости ФЭП, отказе от использования дорогих и токсичных материалов в пользу дешевых и перерабатываемых полимеров иэлектролитов. Важным отличием также является возможность нанесения слоев печатными методами, например, по технологии «рулон-к-рулону» (R2R).

 

Мероприятия по совершенствованию ФЭП. С учетом используемых способов преобразования энергии для уменьшения всех видов ее потерь в ФЭП разрабатываются и применяется следующие мероприятия:

– использование полупроводников с оптимальной для солнечного излучения шириной запрещённой зоны;

– направленное улучшение свойств полупроводниковой структуры путём её оптимального легирования и создания встроенных электрических полей;

– переход от гомогенных к гетерогенным и варизонным полупроводниковым структурам;

– оптимизация конструктивных параметров ФЭП (глубины залегания p-n-перехода, толщины базового слоя, частоты контактной сетки и др.);

– применение многофункциональных оптических покрытий, обеспечивающих просветление, терморегулирование и защиту ФЭП от космической радиации;

– разработка ФЭП, прозрачных в длинноволновой области солнечного спектра за краем основной полосы поглощения;

– создание каскадных ФЭП из специально подобранных по ширине запрещённой зоны полупроводников, позволяющих преобразовывать в каждом каскаде излучение, прошедшее через предыдущий каскад, и пр.;

Также существенного повышения КПД ФЭП удалось добиться за счёт создания преобразователей с двухсторонней чувствительностью (до +80 % к уже имеющемуся КПД одной стороны), применения люминесцентно переизлучающих структур, предварительного разложения солнечного спектра на две или более спектральные области с помощью многослойных плёночных светоделителей (дихроичных зеркал) с последующим преобразованием каждого участка спектра отдельным ФЭП и т.д.

В системах преобразования энергии СЭС (солнечных электростанций) в принципе могут быть использованы любые созданные и разрабатываемые в настоящее время типы ФЭП различной структуры на базе разнообразных полупроводниковых материалов, однако не все они удовлетворяют комплексу требований к этим системам:

– высокая надёжность при длительном (десятки лет!) ресурсе работы;

– доступность исходных материалов в достаточном для изготовления элементов системы преобразования количестве и возможность организации их массового производства;

– приемлемые с точки зрения сроков окупаемости энергозатраты на создание системы преобразования;

– минимальные расходы энергии и массы, связанные с управлением системой преобразования и передачи энергии (космос),включая ориентацию и стабилизацию станции в целом;

– удобство техобслуживания.

Так, например, некоторые перспективные материалы трудно получить в необходимых для создания СЭС количествах из-за ограниченности природных запасов исходного сырья и сложности его переработки. Отдельные методы улучшения энергетических и эксплутационных характеристик ФЭП, например, за счёт создания сложных структур, плохо совместимы с возможностями организации их массового производства при низкой стоимости и т.д. Высокая производительность может быть достигнута лишь при организации полностью автоматизированного производства ФЭП, например, на основе ленточной технологии, и создании развитой сети специализированных предприятий соответствующего профиля, т.е. фактически целой отрасли промышленности, соизмеримой по масштабам с современной радиоэлектронной промышленностью. Изготовление солнечных элементов и сборка солнечных батарей на автоматизированных линиях обеспечит снижение себестоимости модуля батареи в 2-2,5 раза.

В качестве наиболее вероятных материалов для фотоэлектрических систем преобразования солнечной энергии СЭС в настоящее время рассматривается кремний и арсенид галлия (GaAs), причём в последнем случае речь идёт о гетерофотопреобразователях (ГФП) со структурой AlGaAs-GaAs[2].

ФЭП (фотоэлектрические преобразователи) на основе соединения мышьяка с галлием (GaAs), как известно, имеют более высокий, чем кремниевые ФЭП, теоретический КПД, так как ширина запрещённой зоны у них практически совпадает с оптимальной шириной запрещённой зоны для полупроводниковых преобразователей солнечной энергии =1,4 эВ. У кремниевых этот показатель =1,1 эВ.

Вследствие более высокого уровня поглощения солнечного излучения, определяемого прямыми оптическими переходами в GaAs, высокие КПД ФЭП на их основе могут быть получены при значительно меньшей по сравнению с кремнием толщине ФЭП. Принципиально достаточно иметь толщину ГФП 5-6 мкм для получения КПД порядка не менее 20%, тогда как толщина кремниевых элементов не может быть менее 50-100 мкм без заметного снижения их КПД. Это обстоятельство позволяет рассчитывать на создание лёгких плёночных ГФП, для производства которых потребуется сравнительно мало исходного материала, особенно если в качестве подложки удастся использовать не GaAs, а другой материал, например синтетический сапфир (Al2 O3).

ГФП обладают также более благоприятными с точки зрения требований к преобразователям СЭС эксплутационными характеристиками по сравнению с кремниевыми ФЭП. Так, в частности, возможность достижения малых начальных значений обратных токов насыщения в p-n-переходах благодаря большой ширине запрещённой зоны позволяет свести к минимуму величину отрицательных температурных градиентов КПД и оптимальной мощности ГФП и, кроме того, существенно расширять область линейной зависимости последней от плотности светового потока. Экспериментальные зависимости КПД ГФП от температуры говорят о том, что повышение равновесной температуры последних до 150-180°С не приводит к существенному снижению их КПД и оптимальной удельной мощности. В то же время для кремниевых ФЭП повышение температуры выше 60-70°С является почти критическим - КПД падает вдвое.

Благодаря устойчивости к высоким температурам арсенид-галлиевые ФЭП позволяют применять к ним концентраторы солнечного излучения. Рабочая температура ГФП на GaAs доходит до 180 °С, что уже является вполне рабочими температурами и для тепловых двигателей, паротурбин. Таким образом, к 30-процентному собственному КПД арсенид-галлиевых ГФП (при 150°C) можно прибавить КПД теплового двигателя, использующего сбросовое тепло охлаждающей фотоэлементы жидкости. Поэтому общий КПД установки, которая к тому же использует и третий цикл отбора низкотемпературного тепла у охлаждающей жидкости после турбины на обогрев помещений - может быть даже выше 50-60 %.

Также ГФП на основе GaAs в значительно меньшей степени, чем кремниевые ФЭП, подвержены разрушению потоками протонов и электронов высоких энергий вследствие высокого уровня поглощения света в GaAs, а также малых требуемых значений времени жизни и диффузионной длины неосновных носителей. Более того, эксперименты показали, что значительная часть радиационных дефектов в ГФП на основе GaAs исчезает после их термообработки ( отжига) при температуре как раз порядка 150-180 °С. Если ГФП из GaAs будут постоянно работать при температуре порядка 150°С, то степень радиационной деградации их КПД будет относительно небольшой на протяжении всего срока активного функционирования станций ( особенно это касается космических солнечных энергоустановок, для которых важен малые вес и размер ФЭП и высокий КПД).

В целом можно заключить, что энергетические, массовые и эксплутационные характеристики ГФП на основе GaAs в большей степени соответствуют требованиям СЭС и СКЭС (космич.), чем характеристики кремниевых ФЭП. Однако кремний является значительно более доступным и освоенным в производстве материалом, чем арсенид галлия. Кремний широко распространён в природе, и запасы исходного сырья для создания ФЭП на его основе практически неограниченны. Технология изготовления кремниевых ФЭП хорошо отработана и непрерывно совершенствуется.

Существует реальная перспектива снижения стоимости кремниевых ФЭП на один - два порядка при внедрении новых автоматизированных методов производства, позволяющих в частности, получать кремниевые ленты, солнечные элементы большой площади и т.п.

В реально действующих структурах с гетеропереходами КПД достигает на сегодняшний день более 30% , а в однородных полупроводниках типа монокристаллического кремния - до 18%. Среднее значение КПД в солнечных батареях на монокристаллическом кремнии сегодня около 12%, хотя достигает и 18%. Именно, в основном, кремниевые СБ можно видеть сегодня на крышах домов разных стран мира.

В отличие от кремния галлий является весьма дефицитным материалом, что ограничивает возможности производства ГФП на основе GaAs в количествах, необходимых для широкого внедрения.

Галлий добывается в основном из бокситов, однако рассматривается также возможность его получения из угольной золы и морской воды. Самые большие запасы галлия содержатся в морской воде, однако его концентрация там весьма невелика, выход при извлечении оценивается величиной всего в 1% и, следовательно, затраты на производство будут, вероятно, чрезмерно большими. Технология производства ГФП на основе GaAs с использованием методов жидкостной и газовой эпитаксии (ориентированного роста одного монокристалла на поверхности другого {на подложке} ), не развита ещё до такой степени, как технология производства кремниевых ФЭП и в результате этого стоимость ГФП сейчас существенно выше (на порядки) стоимости ФЭП из кремния.

Стоимость ГФП при их массовом производстве на базе усовершенствованной технологии будет, вероятно, также значительно снижена, и в целом стоимость системы преобразования системы преобразования энергии СЭС на основе ГФП из GaAs может оказаться вполне соизмеримой со стоимостью системы на основе кремния. Таким образом, в настоящее время трудно до конца отдать явное предпочтение одному из двух рассмотренных полупроводниковых материалов - кремнию или арсениду галлия, и лишь дальнейшее развитие технологии их производства покажет, какой вариант окажется более рационален для наземной и космической солнечных энергетики.

 

Стоимость производства энергии с использованием фотоэлектрических преобразователей солнечной энергии.Одним из существенных моментов в распространении солнечной энергетики является ее стоимость.

Главный показатель цены фотовольтаических панелей – стоимость за один киловатт установленной мощности.

Это значение последовательно уменьшается год от года на протяжении более 15 последних лет[3] (рис. 4.15).


Рис. 4.15. Стоимость 1 Вт установленной мощности ФЭП

 

Стоимость небольших фотоэлектрических систем (менее 500 кВт) для нежилых помещений в 2014 году снизилась на $0,40 за ватт, а стоимость более мощных систем от 500 кВт сократилась на $0,70 за ватт. Уже пятый год подряд отмечается существенное снижение цен на солнечные батареи с установкой. И процесс продолжается: в первом полугодии 2015 года цены упали еще на $0,20-0,50/Вт, то есть на 6-13%. Постоянное снижение цен на фотоэлектрические системы особенно примечательно на фоне относительно стабильной цены на сами PV-модули. На американском рынке цена панелей падает за счет снижения сопутствующих расходов на установку, снижения цен на другие комплектующие (инвертер, стекло, алюминий, провода и проч.) более эффективного дизайна систем, стоимости получения разрешений и инспекций, удешевлению труда рабочих, а также благодаря усилиям компаний по маркетингу и захвату рынка.

В итоге, серьезно снижается стоимость «солнечного электричества», которое вырабатывается на коммерческих солнечных электростанциях. За последние 7-8 лет стоимость упала с $200 за МВт·ч (то есть с 20 центов за кВт·ч) почти до $40 за МВТч (до 4 центов за кВт·ч). Цифры взяты из отчета Национальной лаборатории Лоренса Беркли “Is $50/MWh Solar for Real?”.
Особенно четко падение цен прослеживается, если вывести зависимость не по времени, а по совокупной мощности уже установленных панелей, то есть введенных в строй электростанций. Здесь видно, что падение цен происходит очень стабильно: на каждое удвоение общей мощности цена установки новых панелей снижается на 16%. Это вполне естественный эффект: цены на любой продукт должны снижаться при увеличении объемов продаж.
Отчет “Tracking the Sun” основан на информации, собранной с более чем 400 000 фотоэлектрических систем, установленных на жилых и нежилых помещениях с 1998 по 2014 годы в 42 штатах. Это более 80% всех PV-систем, установленных в стране за данный период.

Если «закон Мура» здесь сохранит свою силу, то к 2020 или 2021 году совокупная мощность всех солнечных электростанций в мире достигнет 600 ГВт, а стоимость электроэнергии без субсидий опустится до 4,5 центов за кВт·ч для самых солнечных территорий (юг США, Австралия, Ближний Восток и др.) и до 6,5 центов за кВтч для умеренно солнечных территорий (Центральная Европа, большая часть территории США).

Каковы сегодня цены на солнечную энергию[4]? По данным американского издания Pv-magazine цены в августе 2016 достигли минимума, а европейские и китайские производители PV-панелей в снижении цен «идут ноздря в ноздрю», конкурируя между собой за потребителя (рис. 4.16).

Рис. 4.16. Цены на модули из кремния на оптовом рынке ЕС, август 2015 – август 2016 (на 10/08/2016) по происхождению товара[5]

 

Цены указаны за так называемый «пиковый ватт», или Вт-пик (Wp), то есть за максимально возможную генерируемую мощность. В таблице 4.1. показано сравнение усредненных цен за кремниевые панели разных типов на европейском рынке за июль 2016 г.

 

Таблица 4.1. Обзор цен PV-модулей в Европе за ?/Вт-пик по состоянию на июль 2016 (данные Bloomberg New Energy Finance, pvXchange, США)

«Классические» PV-панели собираются из кремниевых ячеек, сделанных из разных его видов – монокристаллического, поликристаллического, аморфного и т.д.

Эксперты из Института политики Земли (Earth Policy Institute, EPI) и исследовательского центра Bloomberg New Energy Finance (BNEF) подсчитали степень влияния цен на кремниевые панели и взаимосвязь с ростом числа установок солнечной электрогенерации в мире. Диаграмма[6] на рис. 4.17 иллюстрирует, как изменились цены на PV-панели из расчета за $/Вт-пик установленной мощности с 1975 по 2015 г.

 

Рис. 4.17. История мировых цен на кремниевые PV-панели всех типов

в 1975 – 2015

Взаимное влияние снижения стоимости установленной мощности, себестоимости солнечной электрогенерации и роста числа PV-установок в мире.

За это время стоимость электрогенерации снизилась в более, чем 150 раз (при том, что цена за Вт-пик установленной мощности снизилась > 210 раз), а общее число установок в мире, преобразующих солнечный свет в электричество, выросло в 115 тысяч (!) раз.

Как видно, когда цена солнечных PV-панелей была около $100 за 1 Вт-пик в 1975 г., то общий объем установок в мире составлял всего около 2 МВт. Всего за два года цена упала до $76,67 за 1Вт-пик. С тех пор прошло, в общем-то, совсем немного времени, но теперь всё изменилось. К началу 2016 года среднемировая цена за модуль из кремния за Вт-пик установленной мощности составила около $0,61, а глобальное число установок PV-генерации выросло по экспоненте.

Начиная с 1975 г., стоимость технологии быстро падала. С 1976 до 2008 года цена за 1 Вт-пик мощности модуля упала на 99 %. А с 2008 до 2015-го – еще на 80 %. И только между 2000 и 2005 гг., по оценке BNEF, произошел настоящий прорыв в количестве PV-установок, когда цена за ватт достигла «критической точки» для инвесторов, после чего глобальная установленная мощность быстро достигла уровня 65 ГВт в 2015 г.

Снижение цен и увеличение объемов продаж PV-модулей непосредственно связаны между собой. За последние четыре десятилетия каждое падение цены солнечных панелей примерно на 26 % вызывало удвоение масштабов отрасли мировой солнечной энергетики. Сейчас глобальные инвестиции в отрасль только растут. И это не предел. Это будет продолжаться вплоть до 2030 – 2040 гг. «Инвестиционная усталость», то есть когда прибыльность инвестиций в солнечную энергетику заметно снизится, не грозит еще пару десятилетий.

Все ниже, и ниже, и ниже.«Футуристические» прогнозы BNEF подтверждаются цифрами реальной статистики. В мае 2015 г. были обнародованы исследования Национальной лаборатории Лоуренса в Беркли (Lawrence Berkeley National Laboratory, LBNL, США). Анализ оптовых контрактов продажи солнечной электроэнергии по гарантированной цене (PPA) показал, что еще в январе 2015 г. было заключено 18 таких контрактов на 1,1 ГВт·ч по цене $50/МВт·ч, т.е. всего по 5 центов за 1 кВт·ч, при том, что обычная средняя цена электроэнергии в США за 1 кВт·ч составляет 12 центов.

Это иллюстрирует и падение цен производителей солнечной электроэнергии для крупных коммунальных потребителей. Причем эти «рекорды» быстро устаревают. Например, компания Austin Energy, США, сообщала, что осенью 2014 г. она «подписала рамочное соглашение с First Solar Inc. и Hanwha Q-Cells Corp., США, на 288 МВт полезной потребляемой мощности» электроэнергии, полученной от солнечных установок «при цене ниже 4 цента за кВт·ч». Но уже в конце 2015 г. «городские власти г. Пало-Альто заключили контракт на приобретение электричества из солнечной энергии по $37/МВт·ч», а Bloomberg сообщил, что «энергокомпания Berkshire Hathaway Inc. NV Energy согласилась заплатить 3,87 цента за кВт·ч для мощности от 100 МВт» по проекту, который развивает First Solar Inc., США.

Новые тендеры в Эмиратах выглядят просто ошеломляюще. Администрация по электричеству и воде г. Дубай (Dubai Electricity and Water Authority, DEWA) получила предложение на 800 МВт на поставку фотоэлектричества по 2,99 центов за кВт·ч. Это почти вдвое ниже, чем по заключенному в 2015 г. 25-летнему контракту на 1000 МВт потребляемой мощности по 5,84 цента за кВт·ч. Таким образом, Дубай получил почти двукратное снижение цен на PV-энергию всего за 18 месяцев, причем все эти тендерные предложения были без субсидий и «зеленых тарифов»! И эти цены не являются уникальными. Как сообщил BNEF в апреле 2016 г., коммунальная компания Enel Green Power подписала крупный контракт в Мексике по 3,6 за кВт·ч. Солнечная энергетика уверенно движется к экономической конкурентоспособности с традиционными видами электрогенерации.

Доля в цене.Исполнительный директор крупнейшей в США вертикально интегрированной компании в области солнечной энергетики First Solar Inc. Джим Хьюз, выступая в Edison Electric Institute (EEI), США, с энтузиазмом заявил, что до 2017 г. «мы добьемся полной цены за 1 кВт установленной мощности менее $1!». И вторая новость – «в 2017 году по сравнению с ценой 2015 г. цена солнечных установок упадет еще на 40 %» – прозвучала на Всемирной конференции по будущему энергетики World Energy Future Conference в Абу-Даби тоже в 2015 г. Нет ли тут противоречий с графиками цен на рис.4.16 и 4.17?

Дело в том, что следует различать полную цену установленной мощности всей солнечной установки и цену за установленную мощность кремниевой PV-ячейки или PV-панели. В структуре себестоимости энергетической установки ни ячейка, ни даже панель в сборе с элементами крепления не составляют самую большую статью затрат[7] (рис. 4.18).

 

Рис. 4.18 Структура себестоимости PV-установки для частного дома в США

 

Аналитики Deutsche Bank показали, откуда возьмутся эти 40 % падения цены за солнечную электрическую установку в 2017 г. на примере анализа составляющих себестоимости домашней PV-установки для частного дома в США.

Большая часть PV-рынка будет сосредоточена именно на развитии малых домашних систем. Большинство стран мира, где ожидается мировой прирост применения солнечного электричества, пока не обладают мощной сетевой структурой, которая позволит эффективно перераспределять энергию между населенными пунктами или регионами. Это относится даже к США. В Германии ситуация с инфраструктурой лучше. Полная стоимость домашних систем там меньше, а общая стоимость установок за 3 последних года снизилась примерно на 40 %. Затраты в Германии сегодня значительно ниже, чем в США и на других менее развитых «солнечных» рынках. Немецкий пример показывает, что снижение общих затрат на PV-систему еще не достигло дна даже на сравнительно зрелых рынках.

Основной рынок PV-установок на ближайшие годы – это панели на крышах частных домов.Домашние системы в большинстве случаев не смогут эффективно сбрасывать избыток PV-электричества в общую электросеть, а в другое время компенсировать из нее недостаток (в темное время суток, в пасмурную погоду или при нерегулярном пиковом потреблении). Т.н. «сетевой паритет», то есть когда цена за выработанную у себя в домохозяйстве электроэнергию сравняется тарифом за покупное электричество из сети, в большинстве случаев окажется весьма условным показателем.

Показатель BoS (рис. 4.18) означает дополнительные части фотоэлектрической системы, за исключением самой солнечной батареи, т.е. компоненты, необходимые для преобразования выходной мощности PV-панели в полезную электрическую энергию. Поэтому в США в BoS обычно включаются и аккумуляторы. Тем не менее, развитие рынка позволит снизить все составляющие конечной цены за ватт, включая второй по величине вслед за ценой модуля показатель – цену за монтаж.

Цена на кремний – не главное.По расчетам Deutsche Bank стоимость солнечных модулей снизилась с 1,31 $/ватт в 2011 г. до 0,50 $/ватт в 2014 г. за счет снижения затрат на обработку, падения затрат на поликристаллический кремний и улучшения КПД PV-преобразования. Цена на модули тогда упала почти на 60 % за три года. Deutsche Bank считает, что общие расходы могут снизиться еще на 30 – 40 % в течение нескольких следующих лет, но в основном за счет снижения операционных расходов из-за развития самого рынка, особенно для жилого сектора.

Снижение цены кремния в солнечной панели теперь сказывается незначительно. В общей цене модуля сам кремний «весит» не более 10 – 11 центов за ватт, и даже двукратное снижение его цены, которое можно достичь огромными технологическими и финансовыми усилиями, не скажется «революционным» образом на общую себестоимость PV-панелей. Хотя в течение следующих 12 кварталов Deutsche Bank все же ожидает падения цены PV-модулей до равновесной цены спроса-предложения на уровне $0,40 – $0,50 за ватт. Если панели будут продаваться с 10 центами валовой прибыли при цене $0,50 за ватт, то это значит, что производители получат минимум 20 % валовой прибыли – значительно выше, чем недавние исторические средние значения. Кроме того, должны снизиться затраты на таможенные пошлины и транспортировку.

Цены на инверторы, как правило, снижаются на 10-15 % в год. В Deutsche Bank ожидают, что эта тенденция сохранится и в будущем. Крупные «солнечные провайдеры» уже достигли при больших поставках уровня $0,25 за 1Вт или еще ниже. Есть предпосылки ожидать, что дополнительная экономия будет найдена в течение следующих нескольких лет. Снижение затрат на компоненты, уменьшение издерже



Дата добавления: 2016-12-27; просмотров: 8920;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.036 сек.