Изоэлектрическим состоянием белка называется состояние белковой молекулы, при котором её положительные и отрицательные заряды взаимно скомпенсированы.


Молекулу белка в изоэлектрическом состоянии можно считать нейтральной, хотя в ней имеются ионизированные группы.

Условно молекулу белка в изоэлектрическом состоянии можно изобразить так:

 

+NH3 –R – COO

 

 

Изоэлектрическая точка белка (ИТБ) – это значение рН, при котором белок переходит в изоэлектрическое состояние.

ИЭТ белков лежит в пределах рН от 2 (у пепсина) до 10,6 (у цитохрома С), но преимущественно ИЭТ белков соответствует рН < 7. ИЭТ некоторых белков достигается при следующих значениях рНИЭТ: пепсина (фермент желудочного сока) – 2,0; казеина (белок, образующийся при свёртывании молока) – 4,6; альбумина яйца – 4,8; карбоксигемоглобина – 6,87; химотрипсина (фермент сока поджелудочной железы) – 8,6.

В изоэлектрическом состоянии свойства растворов белков резко меняются: при этом они имеют, например, наименьшую вязкость, плохую растворимость, что связано с изменением формы макромолекул. При значении рН, близком к изоэлектрической точке, разноименно заряженные группы – (NH3)+ и СОО притягиваются друг к другу и макромолекула закручивается в спираль. При смещении рН среды от изоэлектрической точки одноимённо заряженные группы отталкиваются и цепь выпрямляется. Молекулы ВМС в развёрнутом состоянии придают раствором более высокую вязкость, чем молекулы ВМС, свёрнутые в спираль или клубок.

Электрофорез

Электрофорезом называют перемещение заряженных частиц в электрическом поле (если имеют дело с небольшими ионами, говорят о ионофорезе). Движение вещества происходит в жидкой среде, которая удерживается инертным носителем, например бумагой или полужидким гелем. Жидкость служит проводящей средой для электрического поля, когда к ней приложено внешнее напряжение. Подвижность заряженной частицы (макромолекулы) в электрическом поле называется электрофоретической подвижностью. Зная электрофоретическую подвижность, можно сравнить заряды и массы молекул, входящих в состав исследуемого образца с эталонными белками.

Наибольшее распространение получил электрофорез в полиакриламидном геле, который широко применяется при анализе белков и нуклеиновых кислот.

Значение рI полипептида нельзя вычислять тем же способом, что и для аминокислот. Для нахождения изоэлектрической точки полипептида (белка) необходимо:

1. Измерить подвижность полипептида при нескольких разных значениях рН;

2. Построить график зависимости подвижности от рН;

3. Графически найти значение рН, соответствующее нулевой подвижности.

Значение изоэлектрической точки может дать определённую информацию общего характера об аминокислотном составе белка. Например, белок с большим содержанием кислых аминокислот, чем основных, имеет рI < 7; в противном случае рI > 7/ Пепсин, белок пищеварения, экскретируемый клетками в желудок и очень богатый глутаминовой и аспаргиновой кислотами, имеет рI ~ 1. В то же время гистоны ядра, очень богатые аргинином и лизином, имеют рI ~ 12. Значение изоэлектрической точки может помочь при составлении схемы выделения белка, поскольку растворимость белка минимальна при рН = рI.

СТУДНИ И ПРОЦЕСС СТУДНЕОБРАЗОВАНИЯ

Студни – это структурированные системы, образующиеся при отвердевании жидких растворов полимеров или при набухании твёрдых полимеров.

 

[Студни это системы полимер – растворитель, характеризующиеся большими обратимыми деформациями при практически полном отсутствии вязкого течения. Для этих систем иногда применяют термин «гели», который в коллоидной химии означает скоагулированные золи. Исторически термин «гель» появился при исследовании именно полимерной системы (водного раствора желатина), однако, после размежевания коллоидной химии и химии полимеров в последней используют термин «студни».]

 

Ограниченное набухание полимеров приводит к образованию студней. Примером могут служить такие системы как набухший в органическом растворителе каучук или застывший при охлаждении раствор желатины.

Студни получаются из растворов ВМС, а гели из золей. Студень представляет собой пространственную сетку из макромолекул полимера, заполненную молекулами растворителя. Студень система гомогенная.

Студни могут образовываться не только в результате набухания, но и из твёрдых полимеров, а также из их растворов. Схематически процесс студнеобразования можно представить следующей схемой:

 

Ограниченное набухание Застудневание

Твёрдые ВМС -----------------→ Студни ←-------------------- Растворы ВМС

 

Застудневание (желатинирование)– процесс фазового перехода из жидкого состояния в твёрдое состояние. Образование студня происходит в результате взаимодействия между макромолекулами ВМС. Макромолекулы неоднородны и имеют лиофильные (по отношению к воде – гидрофильные) и лиофобные (гидрофобные) участки. У гидрофильных групп макромолекул (-NH2, -COH, =NH, -OН, -COOH) образуются гидратные слои. Эти слои экранируют отдельные участки макромолекул. Гидрофобные группы (например, -СН2 – боковых звеньев белков) неспособны формировать подобные слои. Наличие свободных, не защищённых сольватной (гидратной) оболочкой участков макромолекул при определённых условиях, в частности при росте концентрации ВМС, приводит к возникновению взаимодействия между этими участками; в результате образуется структура (каркас, сетка) из макромолекул ВМС, а раствор ВМС переходит в студень. Причины возникновения прочных связей могут быть разными. Например, если полимер содержит ионогенные группы, то взаимодействие этих групп, несущих противоположные по знаку заряды, является одной из причин образования межмолекулярных связей. Полярные группы макромолекул также могут взаимодействовать друг с другом. Иногда возможно образование и водородных связей.

Застудневание (или желатинирование) может происходить самопроизвольно под действием электролитов и при изменении температуры. Так, например, 30 – 34%-й раствор желатина застудневает при 303 К, а 10% -й раствор при более низкой температуре, равной 295К. Повышение концентрации ВМС всегда увеличивает вероятность застудневания, так как при этом возрастает вероятность столкновения макромолекул или их фрагментов. При этом возрастает вероятность образования межмолекулярных связей и, следовательно, появления в системе каркаса. Обычно такой эффект вызывает и понижение температуры, хотя бывают и исключения. Исключения объясняются отрицательным температурным коэффициентом растворимости ВМС.

Электролиты по-разному влияют на скорость застудневания: одни – ускоряют, другие – замедляют, а некоторые – даже исключают возможность перехода ВМС в студень. На застудневание главным образом влияют анионы. Эксперименты показали, что соли серной и уксусной кислот ускоряют процесс застудневания, хлориды и йодиды замедляют, а роданиды приостанавливают этот процесс. Анионы располагаются в следующий ряд по мере уменьшения их действия на процесс застудневания:

 

SO42- > CH3COO1- > Cl1- > Br1- > I1- > CNS1-

 

Различия в указанных свойствах электролитов объясняются степенью их гидратации, которая уменьшается у анионов слева направо в данном ряду. Замедляющее действие анионов на процесс застудневания наблюдается, начиная с иона хлора.

На способность к застудневанию водных растворов белков (амфотерные полиэлектролиты) сильно влияет рН среды. Процесс образования студня лучше всего идёт при значении рН, отвечающем изоэлектрической точке, так как при этом по всей длине молекулярной цепи расположено одинаковое число противоположно заряженных ионизированных групп, что способствует установлению связи между отдельными макромолекулами. С изменением рН (в обе стороны от изоэлектрической точки) макромолекулы приобретают одноимённый заряд, что препятствует образованию связей между ними. При добавлении больших количеств кислоты или щёлочи степень ионизации ионогенных групп уменьшается и тенденция к застудневанию снова увеличивается.

Повышение температуры, если только в системе не происходит необратимых химических изменений, обычно препятствуют застудневанию. Это связано с возрастанием интенсивности микроброуновского движения сегментов макромолекул и уменьшением вследствие этого числа связей между макромолекулами. Наоборот, понижение температуры, как правило, способствует застудневанию, так как возрастает число контактов между макромолекулами, связи между ними упрочняются.

На процесс застудневания влияют размеры макромолекул и их разветвлённость. Особенно легко образуют студни ВМС, у которых длина макромолекул достигает нескольких тысяч ангстрем и в тысячи раз превышает их поперечные размеры.

 

[Ангстрем – внесистемная единица длины, 1А = 10-10 м = 10-8 см = 0,1 нм; применяется в оптике, атомной физике, физике твёрдого тела и т.д.]

 

Застудневанию растворов ВМС всегда способствует повышение концентрации, так как при этом возрастает частота столкновений между макромолекулами или их участками и увеличивается число связей, образующихся в единице объёма студня. Однако, если молекулы полимера вытянуты, то застудневание может проходить и в очень разбавленных растворах. Так, при обычной температуре раствор агара образует студень при его содержании в нём 0,2% сухого вещества.

Чем выше концентрация полимера в растворе, тем выше температура, при которой растворы ВМС переходят в студни. Например, 30 – 45%-ные растворы желатина способны переходить в студни при 300С, 10%-ный раствор переходит в студень при ≈220С. Объём системы при застудневании обычно уменьшается.

СВОЙСТВА СТУДНЕЙ

Все студни (и гели) обладают свойствами и твёрдого тела и жидкости. К свойствам, характерным для твёрдого тела, относятся прочность, упругость, эластичность, способность сохранять определённую форму. Упругость студней определяется прочностью и гибкостью макромолекулярной сетки в них, а также свойствами ориентированных молекул растворителя. Особенно это характерно для полярных макромолекул в водной среде. Гидратные оболочки, окружающие полярные группы, создают упругую водную сетку студня.

Упругие и эластичные свойства студней проявляются при работе мышц человека. Мышцы состоят из волокон ткани, которые образуют студни. Под влиянием нервных импульсов и вследствие эластичности эти своеобразные студни способны сокращаться, совершать работу и обеспечивать двигательные процессы организма человека.

Структурно-механические свойства студней зависят от прочности каркаса, образованного макромолекулами. Если в студне каркас образован за счёт прочных химических связей или водородными связями, то при механическом воздействии на такие студни структура разрушается и такие студни не восстанавливают свою структуру. Однако, если связи между макромолекулами слабые, имеют малую прочность, то после механического воздействия структура студня восстанавливается. Такие студни являются тиксотропно-обратимыми.

Тиксотропия – это обратимое изменение физико-механических свойств полимерных и дисперсных систем при механических воздействиях на эти системы в изотермических условиях.

Примерами могут служить такие продукты как кефир, маргарин, тиксотропными свойствами обладают тесто, строительные растворы и т.д. Тиксотропными свойствами обладают и студни желатина и агар-агара.

[Желатина – продукт денатурации коллагена – белка соединительной ткани. Получают вывариванием костей, хрящей, сухожилий. Применяют в пищевой промышленности.

Агар (агар-агар) смесь двух полисахаридов, содержащихся в клеточных стенках красных водорослей. Растворяется в горячей воде, при охлаждении образует плотный студень. Применяется в кондитерской промышленности, вы биологии как основа питательных сред для выращивания клеток и микроорганизмов].

Жидкость, заполняющую сетку студня, часто называют интермицелярной, её можно разделить на свободную, которая механически включена в каркас студня и не входит в сольватную оболочку, и связанную. Количество связанной воды в студне зависит от степени гидрофильности макромолекулы: чем больше количество гидрофильных групп, тем больше связанной воды в студне.

Связанная вода обладает особыми свойствами: большой плотностью, пониженной температурой замерзания и т.д. Связанная вода студней играет большую роль в природе: её присутствие в почве, растениях, во всех живых организмах обеспечивает морозоустойчивость, поддерживает “водные запасы”, определяет морфологические структуры клеток и тканей. В человеческом организме доля связанной воды у младенцев составляет примерно 70%, а у пожилых людей – до 40%, что обусловливает появление морщин, дрялость кожи.

При старении студни теряют гомогенность. Это явление называют синерезисом. Синерезис сопровождается уплотнением пространственной структурной сетки и уменьшением объёма студня за счёт выделения жидкой фазы. Примеры синерезиса – отделение сыворотки при свёртывании крови, при скисании молока и т.д. В человеческом организме синерезис идёт достаточно медленно и скорость его индивидуальна. Следует отметить, что при синерезисе вначале выделяется свободная вода, а затем, частично, связанная. Студни не способны восстанавливать свою структуру.

Для студней амфотерных белков наибольший синерезис осуществляется в изоэлектрической точке. С отклонением рН среды в ту или другую сторону от изоэлектрической точки синерезис уменьшается, так как фрагменты макромолекулы приобретают одноименный заряд, что приводит к взаимному отталкиванию цепочек макромолекул друг от друга. Это в свою очередь вызывает увеличение объёма студня, а следовательно, и уменьшение синерезиса. Влияние низкомолекулярных электролитов на синерезис различно, но, как правило, электролиты, способствующие набуханию, уменьшают синерезис.

Из-за наличия пространственной сетки в студнях отсутствуют перемешивающие конвекционные потоки. Поэтому в них реагирующие вещества соприкасаются в результате медленной диффузии. Поэтому химические реакции, протекающие в студнях, имеют свои особенности. Например, если в студень желатины заранее ввести некоторое количество дихромата калия, а потом добавить более концентрированный раствор нитрата серебра, то возникает окрашенный осадок дихромата серебра:

K2Cr2O7 + 2AgNO3 → Ag2Cr2O7↓ + 2KNO3.

При стоянии в результате диффузии нитрата серебра осадок распространяется вглубь студня, но не сплошной массой: возникают периодические зоны осадка (кольца Лизеганга) отделённые друг от друга совершенно прозрачными промежутками. Эти реакции получили названия периодических. Их впервые наблюдал немецкий химик Р. Лизеганг (1886), отсюда и название «кольца Лизеганга»..

Периодическими реакциями объясняют сложное распределение окраски многих минералов, генерацию нервных импульсов, мышечные сокращения, сложное строение камней, образующихся в почках, печени и желчном пузыре.

На механические свойства студней сильно влияет концентрация ВМС в студне. Если в студне в единице объёма малое число постоянных межмолекулярных связей, то такой студень весьма эластичен. Студни с большим числом связей между макромолекулами малоэластичны, у них достаточно жесткая образовавшаяся сетка из макромолекул.

Коацервация. При нарушении устойчивости раствора белка или полисахарида возможно образование коацервата – новой жидкой фазы, обогащённой биополимером. Коацерват может выделяться в виде капель или образовывать сплошной слой, что приводит к расслаиванию системы на две фазы. Одна из фаз представляет собой раствор ВМС в растворителе, а другая – раствор растворителя в ВМС.

Коацервацию можно вызвать изменением температуры, рн среды или введением низкомолекулярных веществ.

Наиболее изучена коацервация белков и полисахаридов в водных растворах. Академик Л.И. Опарин считал, что коацерваты сыграли большую роль в процессах происхождения жизни на Земле.

Коацервацию используют при микрокапсулировании лекарственных веществ. Для этого лекарственное вещество диспергируют в растворе полимера. В результате на поверхности лекарственного вещества формируется оболочка из адсорбированных капелек коацервата полимера. Капельки сливаются в сплошной слой на поверхности частиц лекарственного вещества и специальной обработкой переводятся в твёрдое состояние. Образовавшаяся твёрдая оболочка обеспечивает устойчивость, увеличивает длительность действия и устраняет неприятный вкус лекарственного вещества.

 



Дата добавления: 2016-12-27; просмотров: 9680;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.016 сек.