Континентальная субдукция
В коллизионных областях гималайского типа главным процессом поглощения литосферы, обеспечивающим горизонтальное сокращение этих областей, является континентальная субдукция. Это понятие было введено в 1975 году швейцарским исследователем Альбертом Балли, который в крайне запутанной статье предположил возможность пологого погружения (субдукции) холодной континентальной коры под также континентальную, но горячую и, стало быть, более плавучую литосферу. Сейчас эта идея поддержана детальными геофизическими исследованиями.
Рис. 26. Глобальная система современных континентальных и океанских рифтов, главные зоны субдукции и коллизии, пассивные (внутриплитные) континентальные окраины. а – океанские рифты (зоны спрединга) и трансформные разломы; б – континентальные рифты; в – зоны субдукции: островодужные и окраинно-материковые (двойная линия); г– зоны коллизии; д – пассивные континентальные окраины; е – трансформные континентальные окраины (в том числе пассивные); ж – векторы относительных движений литосферных плит, по Дж. Минстеру, Т. Джордану (1978) и К. Чейзу (1978), с дополнениями; в зонах спрединга – до 15-18 см/год в каждую сторону, в зонах субдукции – до 12 см/год.
Рифтовые зоны: СА- Срединно-Атлантическая; Ам-А – Американо-Антарктическая; Аф-А - Африкано-Антарктическая; ЮЗИ – Юго-Западная Индоокеанская; А-И – Аравийско-Индийская; ВА – Восточно-Африканская; Кр – Красноморская; ЮВИ – Юго-Восточнач Индоокеанская; Ав-А – Австрало-Антарктическая; ЮТ – Южно-Тихоокеанская; ВТ – Восточно-Тихоокеанская; ЗЧ – Западно-Чилийская; Г – Галапагосская; Кл – Калифорнийская; БХ – Рио-Гранде – Бассейнов и Хребтов; ХФ – Горда – Хуан-де-Фука; НГ – Нансена-Гаккеля; М – Момская; Б – Байкальская; Р – Рейнская.
Зоны субдукции: 1 – Тонга-Кермадек, 2 – Новогебридская, 3 – Соломон, 4 – Новобританская, 5 – Зондская, 6 – Манильская, 7 – Филиппинская, 8 – Рюкю, 9 – Марианская, 10 – Идзу-Бонинская, 11 – Японская, 12 – Курило-Камчатская, 13 – Алеутская, 14 – Каскадных гор, 15 – Центральноамериканская, 16 – Малых Антил, 17 – Андская, 18 – Южных Антил (Скотия), 19 – Эоловая (Калабрийская), 20 – Эгейская (Критская), 21 – Мекран.
Сейсмичность областей континентальной субдукции
Субдуцирование холодной литосферы сопровождается глубинной сейсмичностью, которая оконтуривает зону поддвига. В гималайском регионе глубинная сейсмичность наблюдается главным образом в Бадахшано-Памирской зоне, где известны очаги с глубиной до 280 - 300 км. Очаги сосредоточены в круто-наклоненной зоне, довольно резко оборванной по краям, пересекаюшей Гиндукуш, Бадахшан и Центральный Памир. В целом, сейсофокальная зона погружается на северо-запад. Вниз по падению сейсмическая зона становится вертикальной и более всего это напоминает тонушие в континентальной литосфере и астеносфере вертикально поставленные плиты тяжелой океанской коры.
Аналогичная картина (правда, меньшего масштаба) наблюдается перед фронтам Аравийской плиты, в Загросе, в Альпах и некоторых других местах. Ранние объяснения этого явления были следующими. Подошедшие с юга к Евразии континентальные массы (Индостан, Аравия, Африка) были сегментами океанических плит, и между ними и Евразией, по крайней мере до эоцена, существовал океанический бассейн, известный под названием Океан Тетис. Захлопывание этого бассейна сопровождалось нормальной субдукцией океанической литосферы под Евразию, и только начиная с олигоцена началось собственно коллизионное взаимодействие. Cубдуцированная океанская кора оторвалась от континентальной, разорвалась на несколько пластин и стала тонуть практически вертикально. Вопрос, стало быть, в том, что происходило дальше.
В рамках идеи континентальной субдукции вслед за океанским сегментом плиты начинает погружаться и континентальная литосфера. Возможность субдуцирования определяется тем обстоятельством, что в зоне контакта взаимодействующие континентальные литосферы имеют разную плавучесть: верхняя разогрета предшествующей океан-континентальной субдукцией, а нижняя, подъехавшая "на хвосте" океанской, холодная. В результате образуется многоэтажная конструкция, в которой отдельные составляющие первоначально находились неопределенно далеко друг от друга. На рис. показана структура нескольких коллизионных горно-складчатых сооружений, образовавшихся за счет континентальной субдукции.
Рис. 27. Континентальная субдукция, Гималаи
Типы горно-складчатых поясов, развитых на континентальных субдукционных границах
Изучение горно-складчатых поясов, развитых на континентальных субдукционных границах показывает, что они включают две разные группы, различающиеся по структурному стилю, метаморфизму, степени постколлизионных деформаций, топографии, геоморфологии, а также по геометрии и вещественному составу предгорных прогибов. По мнению Л. Ройден, геологические особенности каждой из групп горно-складчатых поясов вероятно связаны с соотношением скоростей субдукции и общей конвергенции, и соответственно, с величиной горизонтального напряжения сжатия, передаваемого поперек субдукционной границы. На первый взгляд не очень понятно, как могут различаться скорость схождения плит и скорость субдукции - кажется, что это один и тот же процесс и скорости должны быть равны. Дело, однако, в том, что субдукция - это только один из механизмов компенсации или поглощения материала в коллизионнах зонах, другие механизмы связаны с образованием различных структур сжатия; по этой и другим причинам скорость движения субдуцирующей плиты может меняться с глубиной. Если скорость с глубиной увеличивается, общая скорость субдукции меньше скорости схождения (конвергенции); если уменьшается - больше скорость конвергенции.
(1) На субдукционных границах, где скорость всей плитной конвергенции меньше, чем скорость субдукции, наведенные горизонтальные напряжения сжатия невелики, и региональные деформации перекрывающей плиты происходят при горизонтальном растяжении. Тектоническим выражением таких отступающих субдукционных границ являются:
- топографически низкие горы,
- небольшая эрозия или денудация,
- низкотемпературный метаморфизм или отсутствие такового
- минимальное вовлечение пород кристаллического фундамента в коллизионные структуры
- малая - до нулевой - скорость постколлизионного схождения
- аномально глубокие передовые прогибы с длительной историей морского осадконакопления в них
Анализ сейсмических и гравитационных данных поперек отступающих субдукционных границ (Апеннины, Карпаты, система Гелленид) показывает, что субдукция контролируется гравитационными силами, возникающими в связи с малой плотностью субдукционных пластин на глубинах между примерно 40 и 80 км в Карпатах, 50 и 150 км в Апеннинах, 50 и 250 км в Гелленидах.
(2). На субдукционных границах, где скорость общей плитной конвергенции больше, чем скорость субдукции, передача горизонтального сжимающего напряжения поперек плитной границы является существенной, и региональные деформации перекрывающей плиты происходят в условиях горизонтальном сжатии. Тектоническим выражением таких продвигающихся субдукционных границ являются:
- топографически высокие горы;
- складчато-надвиговые пояса;
- большая величина эрозии и денудации;
- выходы на дневную поверхность высоко-метаморфизованных пород;
- интенсивные деформации кристаллического основания вплоть до среднекоровых глубин;
- затяжная история молассовой аккумуляции в сопряженных передовых прогибах.
5.2.1 Неотектоника Гималайской области
Анализ гравитационных и сейсмических данных поперек двух продвигающихся субдукционных границ, развитых в континентальной литосфере Западных Альп и Гималаев (рис. 27) показывают, что надвиговые пакеты транслировались на большие расстояния над литосферой форланда (относительно границы субдукции); вероятно, что движения поперек субдукционных границ контролируются дальнодействующими напряжениями, связанными с глобальнымыи движениями плит.
В Гималайской коллизионной области холодная и оттого более тяжелая континентальная литосфера, двигающаяся на хвосте океанской, погружается под более разогретую, и оттого более легкую и пластичную литосферу южной окраины Евразии, а разогрета последняя именно из-за того, что ранее под нее субдуцировала океанская кора; при этом скорость сближения (конвергенции) Индии и Евразии превосходит скорость субдукции (рис. 27). При такой континентальной субдукции в нормальном случае образуется следующий латеральный ряд структур:
- предгорный прогиб (аналог глубоководного желоба при океан-континентальной субдукции) - интенсивно прогибающаяся структура, мигрирующая на пододвигающуюся (холодную) плиту, обычно заполненная молассами большой мощности, которые вблизи шва деформированы в моновергентные складчато-надвиговые пакеты низких предгорий;
- далее, за мощным региональным надвигом расположены высокие предгорья, сложенные доколлизионными породами, также интенсивно деформированными - они представляют собой континентальный аналог аккреционной призмы;
- за ними еще одна надвиговая зона, отделяющая так называемую кристаллическую зону - высокогорную область, сложенную комплексами высоко метаморфизованных пород, включающих породы фундамента древних платформ (структурный аналог островной дуги);
- в тылу гор расположены высокогорные плато, сложенные, как правило доколлизионными осадками и молассами межгорных впадин, деформированными в меньшей степени, чем в горном сооружении; очень часто в эти плато встроены небольшие рифтовые впадины, перпендикулярные горному поясу и соответственно параллельные векторам сближения и напряжениям сжатия;
- а ними расположена тыловая межгорная впадина; взаимодействие блоков плато и межгорной впадины может приводить к образованию граничных тыловых гор и структур сдвигового происхождения, например присдвиговых бассейнов.
Интенсивные поднятия коллизионных горных сооружений этого типа связаны с двумя главными факторами: разогревом коры в зоне сначала океанской, а затем континентальной субдукции и ее термальным деформированием, а во-вторых - скучиванием в зоне коллизии легкой континентальной литосферы, резким увеличением из-за этого мощности легкой коры и ее изостатическим поднятием.
Максимальные абсолютные высоты здесь наблюдаются в кристаллической зоне и достигают, как вам известно, более чем 8 км. При этом, из-за большой скорости денудации, эта величина составляет примерно половину от общей амплитуды поднятия. Определенные Фостером и другими скорость откапывания склонов пика К2 или Чогори в Каракаруме - второй по высоте вершины Мира - по трекам распада в апатитах и цирконах дало среднюю скорость денудации 3-6 мм/год и величину денудационного среза в 7000 м при средней высоте поднятой поверхности около 6000 м. Если учесть, что в сопряженном Сиваликском передовом прогибе подошва моласс залегает на глубине 6-8 км, общие дифференцированные вертикальные движения в этой коллизионной зоне достигают 22-24 км за новейший этап.
5.2.2 Неотектоника Кавказа
Рис. 28. Скорости горизонтальных перемещений в северной Турции и на Большом и Малом Кавказе по данным McClusky S. etal, 2000). Показано положение основных активных разломов.
Рис. 30. Геологическая карта Кавказа
Рис. 31. Разрез через западную часть Кавказа
Другой коллизионой структурой гималайского типа является всем известный Кавказ. На представленных картах показано геологическое строение и новейшая структура Кавказа. Самое грубое неотектоническое районирование Кавказа может быть следующим. Выделяется два крупнейших продольных поднятия - Большого Кавказа, сложенного допалеозойскими, палеозойскими и мезозойскими комплексами, и Малого Кавказа, сложенного в целом более молодыми - мезозойско-кайнозойскими породами, в том числе офиолитами и молодыми вулканитами. Эти поднятия разделяются системой продольных впадин - Рионской и Куринской, вы-полненных в разной степени деформированными и погруженными молассовыми толщами. Все эти неоструктурные элементы продольно сегментированы и отдельные сегменты довольно сильно различаются по строению и стилю деформаций.
Максимальные высоты Кавказы около 5,5 км приурочены к молодым вулканическим массивам на Большом Кавказе - Эльбрусу и Казбеку, минимальный уровень - это уровень Каспийского моря, т.е. ниже уровня мирового океана. Считается, что к концу раннего миоцена - к сарматскому веку - на месте Кавказа существовал сильно выравненный рельеф, остатки которого сохранились на Малом Кавказе (частично под миоплиоценовыми эффузивами, частично откопанными из-под них и на отдельных участках Большого Кавказа. Поднятие горной страны, точнее, ее новейшее, позднеальпийское деформирование началось с конца сармата и охватывало три основных фазы:
Дата добавления: 2016-12-09; просмотров: 4522;