Энергия, единицы измерения
С понятием энергия человек сталкивается постоянно и подчас не задумывается о глубоком смысле и широте его. Энергия определяется как общая количественная мера различных форм движения материи. В соответствии с разнообразием форм движения и различают механическую, тепловую, электрическую, ядерную, химическую и другие виды энергии.
В соответствии с законом сохранения, открытым М.В. Ломоносовым, энергия не теряется, а сохраняется и преобразуется в другие виды энергии.
Поэтому энергия является тем стержнем, который связывает воедино все процессы и явления материального мира. Для объектов энергетики энергетический анализ является основным инструментом исследования процессов преобразования энергии с проверкой на каждом этапе технологического процесса выполнения условия баланса энергии. В процессе преобразования часть энергии может изменять свой вид, что часто усложняет количественный учет и проверку баланса.
Именно потребности измерений энергии на заре развития электротехники стимулировали активное обсуждение на международных выставках 1851 года в Лондоне и 1855 года в Париже необходимости введения единой системы мер и весов. На I Международном конгрессе электриков, состоявшемся в 1881 году, был предложен проект полной системы единиц СГС, в основу которой были положены сантиметр как единица длины, грамм как единица массы и секунда как единица времени. Но применение этой системы в инженерных расчетах создавало определенные трудности из-за малости основных единиц. В 1918 году во Франции, а в 1927 году и в СССР была принята система единиц МТС на основе метра, тонны и секунды. Однако и она оказалась неудобной, но уже из-за другой крайности.
В октябре 1960 года XI Генеральная конференция по мерам и весам утвердила проект единой системы единиц, над которым специальная комиссия работала с 1954 года. Эта система стала известна под наименованием Международная система единиц СИ. В 1961 году в СССР был утвержден ГОСТ 9867-61 «Международная система единиц», которым устанавливалось предпочтительное применение единиц СИ во всех областях науки, техники, образования и народного хозяйства.
Основными единицами СИ являются семь следующих единиц: длины – метр, массы – килограмм, времени – секунда, силы электрического тока – ампер, температуры – кельвин, количества вещества – моль, силы света – кандела.
Кроме основных единиц в состав СИ вводится большое число производных величин, определяемых по отраслям науки и техники. Ниже в табл. 3 приведены производные единицы СИ, которые применяются в электротехнике.
Таким образом, несмотря на разнообразие видов энергии все они измеряются в джоулях. Для механической работы, например, один джоуль определяется работой, выполненной единицей силы на пути в один метр, т.е. 1Дж=1Н·1м.
Производные единицы системы СИ Таблица 3
Величина | Наименование единицы | Обозначение единицы | Выражение через удобные единицы | Выражение через основные единицы |
Частота | герц | Гц | – | с-1 |
Сила | ньютон | Н | – | м кг с-2 |
Давление | паскаль | Па | Н/м2 | м-1 кг с-2 |
Энергия, работа | джоуль | Дж | Н м | м2 кг с-2 |
Мощность | ватт | Вт | Дж/с | м2 кг с-3 |
Количество электричества | кулон | Кл | – | с А |
Электрическое напряжение | вольт | В | Вт/А | м2 кг с-3А-1 |
Электрическая емкость | фарада | Ф | Кл/В | м-2 кг-1 с4 А2 |
Электрическое сопротивление | ом | Ом | В/А | м2 кг с-3 А-2 |
Электрическая проводимость | сименс | См | А/В | м-2 кг-1 с3 А2 |
Поток магнитной индукции | вебер | Вб | В·с | м2 кг с-2 А-1 |
Магнитная индукция | тесла | Тл | Вб/м2 | кг с-2 А-1 |
Индуктивность | генри | Гн | Вб/А | м2 кг с-2 А-2 |
Наряду с единицами системы СИ и их производными в специальных областях, в том числе и в энергетике, допускается применение единиц измерения из других систем и даже внесистемных единиц. Так, например, в энергетике для измерения тепловой энергии часто используется калория, имеющая простой физический смысл: за 1 калорию принимается такое количество теплоты, которое повышает температуру 1 грамма воды на 1 градус. Эта единица может рассматриваться как теплоемкость воды, равная 1 кал/(г·град). Из физики известно соотношение калории и джоуля
1 кал=4,187 Дж.
Для измерения электрической энергии повсеместно используется внесистемная единица кВт·ч. Соотношение между кВт·ч и джоулем можно получить используя системную единицу мощности – 1 Ватт:
1 кВт·ч = 103 Вт ·3600 с =3,6 ·106 Дж.
Учитывая предыдущее соотношение можно определить связь между единицами измерения электрической и тепловой энергии
1 кВт·ч = 3,6·106/4187=860 ккал.
Для измерения больших объемов энергии, имеющих промышленное значение, а также больших и малых значений других физических величин используются приставки кратных и дольных единиц, основные из которых с шагом 1000 перечислены в табл. 4.
Приставки кратных и дольных единиц Таблица 4
Приставка | Множитель | Сокращение | |
русское | международное | ||
тера | 1012 | Т | T |
гига | 109 | Г | G |
мега | 106 | М | M |
кило | 103 | к | k |
милли | 10-3 | м | m |
микро | 10-6 | мк | µ |
нано | 10-9 | н | n |
пико | 10-12 | п | p |
Применение полученных представлений об энергии и единицах измерения позволяет решать некоторые практические задачи по оценке важнейших технико-экономических показателей, которые характеризуют процессы получения и преобразования энергии с использованием в качестве первичных энергоресурсов органического топлива. Важнейшей характеристикой топлива является теплота сгорания, измеряемая в кДж/кг или в ккал/кг и определяющая количество выделяемой тепловой энергии при сгорании 1 кг натурального топлива. Для объективной оценки эффективности процессов выработки энергии на объектах, которые работают на разных видах топлива, вводят понятие условного топлива (у.т.), имеющего фиксированную теплоту сгорания, равную 7000 ккал/кг.
При решении задач будет использоваться понятие коэффициента полезного действия (КПД) как отношения полезной энергии к полной затраченной, и удельного расхода топлива, т.е. расходуемого на единицу полезно отпущенной энергии.
Задача № 2.1.
Сколько воды можно нагреть от температуры to=20 0C до кипения на электроплите при расходе электроэнергии W= 1 кВт·ч , если установка работает с КПД 0=50 %.
Решение
Определим общую энергию в ккал, которая поступает в систему нагрева воды из электрической сети
Q=1кВт·ч´860 ккал/ кВт·ч=860 ккал.
Энергия, которая используется для нагрева воды
.
Из условия нагрева воды при
.
Найдём массу воды
.
Задача № 2.2
Сколько мазута расходуется на ТЭС, работающей с КПД=40%, на выработку 1 кВт·ч электроэнергии, если теплота сгорания с=10000 ккал/кг.
Решение
Определим необходимое количество тепловой энергии, которая должна поступить для выработки 1 кВт·ч при известном КПД
.
Определим массу топлива
.
Задача № 2.3
Сколько воды можно нагреть от 200С до кипения в бытовом котле, работающем с при сжигании 0,215 кг мазута, имеющего с= 10000 ккал/кг.
Решение
Количество тепла, выделяемого при сжигании мазута,
.
Объём теплоты, идущий на нагрев воды,
.
Найдём массу воды .
Рассмотренные задачи позволяют оценить эффективностьдвух технологий нагрева воды по критерию расхода первичного энергоресурса – топлива.. Сравнение их показывает, что вторая технология существенно рациональней первой и является энергосберегающей, поскольку здесь первичный энергоресурс (топливо) используется для нагрева воды без промежуточного преобразования энергии, и общий относительный КПД технологии .
В первой же технологии первичная энергия преобразуется в электрическую с КПД , а затем в тепловую, идущую на нагрев с .
Общий КПД определяется как произведение относительных КПД этапов
.
Таким образом, для оценки эффективности различных технологий необходимо составить чёткую схему последовательного преобразования энергии, оценить КПД каждого звена этой схемы и найти общий КПД как их произведение
.
Дата добавления: 2016-11-29; просмотров: 4427;