Трехфазная мостовая схема выпрямления


Выпрямитель в данной схеме состоит их трансформатора, первичные и вторич­ные обмотки которого соединяются в звезду или треугольник, и шести диодов, которые разделены на две группы (рис. 81, а):

1) катодную, или нечетную (диоды V1, V3 и V5), в которой электрически связаны катоды вентилей и общий вы­вод их является положительным полюсом для внешней цепи, а аноды присоединены к выводам вторичных обмоток тран­сформатора;

2) анодную, или четную (диоды V2, V4 и V6), в ко­торой электрически связаны между собой аноды вентилей, а катоды соединяются с анодами первой группы.

Общая точка связи анодов является отрицательным полюсом для внешней цепи. Нагрузка подключается между точками соединения катодов и анодов вентилей, т.е. к диагонали выпрямленного моста.

Катодная группа вентилей повторяет режим работы трехфаз­ной нулевой схемы. В этой группе вентилей в течение каждой трети периода работает вентиль с наиболее высоким потенциа­лом анода (рис. 81, 6). В анодной группе в данную часть периода работает тот вентиль, у которого катод имеет наиболее отрица­тельный потенциал по отношению к общей точке анодов.

Вентили катодной группы открываются в момент пересече­ния положительных участков синусоид (точки а, 6, в и г на рис. 81, 6), а вентили анодной группы - в момент пересечения отрицательных участков синусоид (точки к, л, м и н). Каждый из вентилей работает в течение одной трети периода (Т/3, или 2π/3).

Рисунок 81 - Трехфазная мостовая схема выпрямителя:

а - схема соединения элементов; б - в-временные диаграммы на­пряжений и токов

При мгновенной коммутации тока в трехфазной мостовой схеме в любой момент времени проводят ток два вентиля - один из катодной, другой из анодной группы, при этом любой вентиль одной группы работает поочередно с двумя вентилями другой группы, соединенными с разными фазами вторичной обмотки (рис. 81, г и д). Иными словами, проводить ток будут те два накрест лежащих вентиля выпрямительного моста, между которыми действует в проводящем направлении наибольшее линейное напряжение u. Например, на интервале времени t1 – t2ток проводят вентили V1, V6, на интервале t2 - t3—вен­тили V1, V2, на интервале t3 – t4 - вентили V3, V2 и т.д. Та­ким образом, интервал проводимости каждого вентиля состав­ляет 2π/3, или 120° (рис. 81, е), а интервал совместной ра­боты двух вентилей равен π/3, или 60°. За период напряжения питания Т = 2πпроисходит шесть переключений вентилей (шесть тактов), в связи с чем такую схему выпрямления часто называют шестипульсной.

Следует отметить, что нумерация вентилей в данной схеме не носит случайный характер, а соответствует порядку их вступле­ния в работу при условии соблюдения фазировки трансформа­тора. Через каждую фазу трансформато­ра ток i2 будет проходить в течение 2/3 периода: 1/3 периода - положительный и 1/3 - отрицательный. Ток idв нагрузке все время проходит в одном направлении. Контур тока нагрузки при открытых вентилях V1 и V6 показан на схеме (рис. 81, а) тонкой черной линией.

Выпрямленное напряжение ud в этой схеме описывается верх­ней частью кривых междуфазных (линейных) напряжений (рис. 81, е). Частота пульсаций кривой ud равна 6f1,коэффи­циент пульсаций напряжения на выходе выпрямителя

q = 2/(m2 -1) = 2/(62 -1) = 0,25= 0,057

Обратное напряжение на закрытом вентиле определяется разностью потенциалов его катода и анода. Максимальное зна­чение обратного напряжения на вентиле в трехфазной мостовой схеме равно амплитуде линейного напряжения вторичной обмот­ки трансформатора, т.е. Uo6p.max = √2 U = 1,05 Ud.При открытом состоянии двух вентилей выпрямительного моста другие четы­ре вентиля закрыты приложенным к ним обратным напряже­нием. Выпрямленный ток id при работе на чисто активную нагруз­ку полностью повторяет кривую напряжения ud.

Напряжение на нагрузке по сравнению с трехфазной схемой с нулевым выводом получается вдвое большим. Это объясняется тем, что трехфазная мостовая схема выпрямителя представляет собой как бы две трехфазные схемы с нулевым выводом, выходы которых вклю­чены последовательно. Это сокращает число витков вторичных обмоток трансформатора и снижает требования к изоляции.

U2 = π/3√6 = 0,425Ud

Среднее значение тока через каждый вентиль в 3 раза меньше тока Id

Iв.ср = 0,33Id

Токи во вторичной и первичной обмотках трансформатора определяются по формулам

I2 = Iв,д = √(2/3) = 0,585Id I1 = I2/n

Типовая мощность трансформатора

ST = π/3 Pd = 1,045Pd



Дата добавления: 2021-01-11; просмотров: 396;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.