Нуклеопротеины. особенности строения и пространственная укладка ДНК-протеина в хромосоме. Строение РНК-протеиновых частиц в рибосоме.


Нуклеопротеины – это сложные белки, содержащие в качестве небольшой части нуклеиновые кислоты (до 65%).

НП состоят из 2-х частей: белковой (содержит гистоны и протамины, которые являясь основными белками, придают основные свойства) и простетической, представленной нуклеиновыми кислотами, сообщающими кислотные свойства. Взаимодействие между этими частями по ион-ионному механизму.

Все НП по составу НК можно разделить на 2 группы: рибонуклеопротеины (РНП) и дезоксирибонуклеопротеины (ДНП).

Состав НК:

Нуклеиновые кислоты – высокомолекулярные органические вещества, полинуклеотиды. Мономерами являются мононуклеотиды. Каждый мононуклеотид состоит из: углевода, азотистого основания и фосфорной кислоты. Так, РНК содержит b-D-рибофуранозу (рибозу), одно из 4-х возможных азотистых оснований (А, Г, Ц или У) и остаток фосфорной кислоты. ДНК содержит b-D-дезоксирибофуранозу (дезоксирибозу), одно из 4-х возможных азотистых оснований (А, Г, Ц или Т) и остаток фосфорной кислоты.

Первый уровень укладки ДНК в хроматине обеспечивается нуклеосомами. Они представляют собой округлые частицы диаметром 15 нм, которые связаны между собой участками ДНК длиной около 20 нм. Отдельная нуклеосома состоит их белковой сердцевины, на которую накручена молекула ДНК. Белковая сердцевина нуклеосомы, или кор, имеет форму диска диаметром 11 нм и толщиной 6 нм. Она содержит по две молекулы гистонов H2A, H2B, H3 и H4. Если развернуть сердцевину, то можно обнаружить, что молекулы гистонов соединены в последовательности H2A, H2B, H4, H3, H3, H4, H2B, H2A. При сворачивании сердцевины молекулы гистонов располагаются как бы в два этажа, наподобие винтовой лестницы. Молекула ДНК в виде левозакрученной суперспирали совершает 1,75 оборота вокруг сердцевины.

Второй уровень укладки ДНК обеспечивается взаимодействием линкерной ДНК с гистоном H1. Молекула гистона H1 своим глобулярным доменом связывается с двумя витками ДНК на нуклеосоме. Одновременно C-концевой фибриллярный домен гистона H1 вступает в контакт с линкерной ДНК. В результате соседние нуклеосомы приближаются друг к другу, формируя группы из 6-8 частиц – нуклеомеры (супербусины) диаметром 25-30 нм Последовательность аминокислот в C-домене гистона H1 гомологична первичной структуре некоторых регуляторов транскрипции. В связи с этим предполагается, что гистон H1 конкурирует с факторами транскрипции за связывание с линкерной ДНК, контролируя тем самым активность генов.

Третий уровень укладки ДНК представлен хроматиновыми фибриллами диаметром 30 нм, которые хорошо видны в электронном микроскопе в интерфазных ядрах и митотических хромосомах. Они имеют суперспиральную структуру и содержат максимально сближенные между собой нуклеомеры. В формировании фибрилл диаметром 30 нм принимают участие гистон H1, а также негистоновые белки с HMG-доменом. За конденсацию хроматина в фибриллу диаметром 30 нм отвечает, прежде всего, C-концевой домен гистона H1. При этом первостепенное значение приобретает уже не взаимодействие гистона с ДНК, а взаимные связи гистоновых молекул между собой.

Четвертый уровень укладки ДНК обеспечивается взаимодействием фибрилл диаметром 30 нм с ядерным матриксом. При этом формируются петлевые домены, содержащие в среднем 90 тысяч пар нуклеотидов. Концы таких петель прикреплены к ядерному матриксу в особых точках, обозначаемых как MARs (matrix attachment regions) или SARs (scaffold attachment regions). Эти точки содержат молекулы свободной ДНК (“форум-ДНК”) длиной 50-150 пар нуклеотидов, которые устойчивы к действию нуклеаз и выделяются из ядра независимо от высокомолекулярной ДНК. Точки MARs содержат также топоизомеразу II, участвующую в формировании изгибов ДНК.Со стороны ядерного матрикса прикрепление хроматиновых нитей обеспечивается ламином A. Петлевые домены являются типовой структурно-функциональной единицей хроматина. Домен во многом автономен, независимо реплицируется и транскрибируется. В своем составе домены имеют кластеры генов, которые связаны функционально. Петлевые домены обеспечивают компактизацию молекулы ДНК в 700 раз.

Пятый уровень укладки ДНК связан с формированием групп из 18-20 петлевых доменов, прикрепленных в виде розетки к общему центру из белков ядерного матрикса. Розетки из петлевых доменов находятся в хроматине в компактном состоянии, образуя округлые гранулы диаметром около 150 нм –хромомеры. При активации локализованных в хромомере генов его величина может возрастать до 300 нм и более.

Шестой уровень укладки ДНК определяется формированием хромонемы – фибриллярной структуры диаметром 200-300 нм, состоящей из плотно упакованных хромомеров. В хроматине интерфазного ядра хромонемы обычно не выявляются. Они становятся видимыми только при конденсации хроматина в профазе митоза, а также в ранней телофазе при деконденсации хромосом. Хромомерный и хромонемный уровни укладки позволяют укоротить длину молекулы ДНК в 10 000 раз.

Седьмой уровень укладки ДНК состоит в образовании хроматид (однохроматидных хромосом) из хромонем. Толщина хроматиды составляет в среднем 700-800 нм. Если учесть, что толщина хромонемы обычно равна 100-200 нм, то коэффициент упаковки для хромосомного уровня составляет не более 10. Способ укладки хромонемы в хромосоме изучен недостаточно. У одних видов хромонема имеет вид спирали, у других в одной хромосоме могут обнаруживаться две и более параллельные друг другу хромонемы. Хромосомный уровень укладки ДНК в большей степени, чем другие уровни, отражает видовые особенности организации генома эукариот.

Строение рРНК и рибосом. Рибосомы состоят из двух субчас­тиц: большой и малой.

Малая субчастица 80S рибосом образована одной молекулой рРНК (18S) и 33 молекулами различных белков. Большая субчастица обра­зована тремя молекулами рРНК (5S, 5,8S и 28S) и примерно 50 белками.

Вторичная структура рРНК образуется за счет коротких двуспиральных участков молекулы — шпилек (около 2/3 рРНК), 1/3 — представлена однотяжевыми участками, богаты­ми пуриновыми нуклеотидами.

 



Дата добавления: 2022-04-12; просмотров: 232;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.