Особенности самолетовождения высотно-скоростных самолетов
Современные самолеты с ГТД, применяемые в ГА, рассчитаны на экономичную эксплуатацию на больших высотах и больших скоростях полета. Самолетовождение высотно-скоростных самолетов имеет целый ряд особенностей, которые необходимо учитывать как; при подготовке к полету, так и в процессе самого полета. Самолетовождение на больших высотах (от 6000 м и выше) имеет следующие особенности:
1. Трудность ведения визуальной ориентировки вследствие ухудшения видимости ориентиров мелких и средних размеров и невозможности их детального распознавания. При дымке ведение визуальной ориентировки еще больше затрудняется. Кроме того, полет на большой высоте проходит в большинстве случаев за облаками, что вообще исключает ведение визуальной ориентировки.
В ясную погоду при отсутствии дымки ведение визуальной ориентировки с больших высот облегчается большой дальностью видимости крупных ориентиров, контуры которых хорошо просматриваются до дальностей, равных десятикратной высоте. Зимой в ясную погоду с высоты 10000 м дальность видимости крупных городов достигает 100— 120км, а летом — 70—80 км. Но при незначительном ухудшении условий видимости контуры крупных ориентиров различаются на удалении, равном семи высотам полета, а характерные отличительные признаки этих ориентиров распознаются в зоне с радиусом, равным только двум высотам полета.
Вследствие того что ведение визуальной ориентировки на большой высоте затруднено, экипаж должен уметь осуществлять самолетовождение с помощью технических средств. Эта особенность вызывает необходимость оснащения высотных самолетов более совершенным навигационным оборудованием, а летный состав заставляет знать это оборудование и уметь грамотно его применять.
2. Снижение точности визуального определения места самолета. Если при полете на средних высотах незначительные угловые ошибки при глазомерном определении вертикали не вызывают больших отклонений в определении места самолета, то эти же угловые ошибки, допущенные в полете на больших высотах, влекут за собой большие линейные отклонения и снижают точность определения места самолета. Неточность отметок места самолета на карте приводит к ошибкам в расчете путевой скорости и снижает точность определения угла сноса и фактического путевого угла.
Ввиду трудности самолетовождения на больших высотах; экипажу предусмотрена помощь службой движения, которая ведет радиолокационный контроль за полетом самолетов и по требованию экипажа сообщает фактические координаты МС, обеспечивает необходимой информацией о воздушной обстановке и метеорологических условиях полета.
Для достижения достаточной точности самолетовождения необходимо, чтобы экипаж использовал в комплексе все технические средства.
3. Увеличение влияния ветра. На больших высотах скорость ветра составляет в среднем 100 км/ч, амаксимальное значение ветра может достигать 300 км/ч. Нередко в зоне струйных течений скорость ветра превышает 600—800 км/ч. Вследствие этого Даже при больших скоростях полета угол сноса может достигать 10°—15° и неучет ветра может привести к значительным уклонениям от ЛЗП.
Большая скорость ветра вызывает значительное расхождение путевой скорости с воздушной, и поэтому точное счисление пути возможно лишь при знании путевой скорости самолета. Эта особенность самолетовождения также приводит к необходимости обязательного учета ветра.
4. Увеличение дальности действия радиотехнических средств. При полетах на больших высотах увеличивается дальность действия наземных радиолокационных станций, средств связи и радиотехнических систем самолетовождения. Поэтому имеется более широкая возможность использования их для контроля пути и сохранения ориентировки.
Однако надо учитывать, что при полете на больших скоростях, особенно при полетах в облаках и осадках, возникают сильные электростатические помехи, уменьшающие точность пеленгования радиостанций с помощью радиокомпаса. В облаках и осадках дальность действия радиокомпаса по приводным радиостанциям может сократиться до 30—50 км. Подстройку и перестройку радиокомпаса необходимо производить до входа самолета в облачность.
На больших высотах возрастают ошибки в определении момента пролета радиостанции с помощью радиокомпаса. Величина запаздывания момента пролета радиостанции может достигать расстояния, равного одной — трем высотам полета. Наибольшая точность пеленгации радиостанций с помощью радиокомпаса получается на расстоянии до радиостанции не ближе трехкратной высоты полета и не далее прямой геометрической видимости.
5. Большие ошибки в определении высоты барометрическим высотомером. С увеличением высоты полета возрастают не только инструментальные ошибки барометрических высотомеров. Большие погрешности в показании высоты на скоростных самолетах возникают также вследствие того, что к высотомеру трудно подвести фактическое атмосферное давление. Давление воздуха, поступающего в высотомер, несколько отличается от фактического давления, что приводит к появлению так называемых аэродинамических ошибок.
Значительные суммарные ошибки в определении высоты по барометрическим высотомерам вызывают необходимость эшелонировать полеты на больших высотах через больший безопасный интервал по сравнению с безопасным интервалом, установленным для средних высот.
6. Уменьшение часового расхода топлива по мере увеличения высоты при полете на одном и том же режиме. Часовой расход топлива на самолетах с ГТД при полете на одном и том же режиме зависит от высоты полета. Чем меньше высота полета, тем больше часовой расход топлива. В связи с этим дальность полета самолета с ГТД на больших высотах значительно больше, чем при полетах на средних и особенно малых высотах. Поэтому определение наивыгоднейшей высоты полета и места начала снижения на самолетах с ГТД приобретает особо важное значение.
7. Выполнение полета на больших высотах связано с большими истинными воздушными скоростями. Вследствие уменьшения плотности воздуха с подъемом на высоту при постоянной скорости по прибору истинная скорость будет увеличиваться. Если на высоте полета 2000 м истинная скорость отличается от приборной на 10%, то на высоте 8000 м это отличие достигает 50%.
При полетах на скоростях более 300 км/ч в показаниях указателя скорости возникает ошибка за счет сжимаемости воздуха. Эта ошибка в зависимости от скорости и высоты полета может достигать больших значений и должна учитываться при расчете скорости полета. Все это требует обязательного расчета для целей самолетовождения истинной воздушной скорости.
Полеты на больших скоростях усложняют работу всего экипажа и особенно штурмана. Сама обстановка полета требует быстрых действий
при навигационных расчетах и установке данных на аппаратуре. Все этотребует от штурмана лучшей подготовки и четкости в работе.
8. Необходимость учета поправки в показания термометра наружного воздуха. На самолетах с ГТД для измерения температуры наружного воздуха устанавливается термометр ТНВ-15. Вследствие нагревания его чувствительного элемента в заторможенном потоке показания термометра становятся завышенными. Поэтому для определения фактической температуры наружного воздуха необходимо в показания термометра вводить поправки, которые определяются по шкале, составленной специально для термометра ТНВ-15 (см. рис. 6.2). Для пользования шкалой поправок истинную воздушную скорость полета отсчитывают по узкой стрелке КУС.
9. Увеличение радиуса и времени разворота. Большие скорости полета значительно увеличивают радиус и время разворота. Обычно эти величины рассчитывают на НЛ-10М, как это показано в гл. 22. Однако некоторые расчеты, например, времени разворота на 360°, можно произвести в уме. Для этого следует помнить, что время разворота t360, измеренное в секундах, численно равно при крене 10° истинной скорости Vи км/ч, при крене 20° — примерно 1/2 Vи км/ч и при крене 15° — 2/3Vи км/ч.
Пример.Vи = 600 км/ч. Определить продолжительность разворота на 360° при кренах самолета 10, 20 и 15°.
Решение. Применяя указанное выше правило, находим:
при крене 10° t360≈ 600 сек = 10 мин;
при крене 20° t360 ≈ 600/2 = 300 сек = 5 мин;
при крене 15° t360 ≈ 600 — 600/3 = 400 сек = 6 мин 40 сек.
10. Необходимость учета радиуса разворота при выходе на новое направление, что достигается началом разворота с упреждением (рис. 24.1).
Величина линейного упреждения разворота
ЛУР = R tgУР/2
Для расчета ЛУР на НЛ-10М необходимо треугольный индекс шкалы 4 установить на величину радиуса разворота, взятого по шкале 5. Затем против половинного значения угла разворота, взятого по шкале 4, прочитать по шкале 5 величину ЛУР.
Выход в точку начала разворота определяют визуально, с помощью радиотехнических средств или по времени.
Пример.Vи=600 км/ч; крен 15°; УР=116°; W = 510 км/ч; Тприб на ППМ 14.20. Определить элементы разворота, время его начала и окончания.
Решение. 1. Определяем на НЛ-10М значения R, ЛУР и время пролета ЛУР: R=10600 м; ЛУР=17000м; tЛУР —2 мин.
2. Рассчитываем время начала разворота:
Тнач.разв = Тприб— tЛУР = 14.20 — 0.02 = 14.18.
3. Определяем на НЛ-10М время разворота на 360° и на заданный угол разворота: t360 = 6 мин 35 сек; tур= 2 мин 07 сек.
4. Рассчитываем время окончания разворота:
Ток.разв = Тнач.разв+ tур= 14.18 + 02,07 = 14.20,07.
11. Полеты высотно-скоростных самолетов осуществляются в основном с ортодромическими путевыми углами (курсами). Ортодромическая система счисления пути имеет некоторые особенности в подготовке к полету и в его выполнении. Она требует определенной теоретической и практической подготовки пилотов и штурманов.
Таблица крейсерских режимов горизонтального полета самолета Ан-24 и пользование таблицей
В целях достижения экономичности полеты по трассам необходимо выполнять на наивыгоднейших режимах. Данные о крейсерских режимах горизонтального полета для самолета Ан-24 для основных полетных весов приведены в табл. 24.1. Эта таблица предназначена для определения наивыгоднейшей скорости полета и часового расхода топлива. Ниже дается характеристика установленных крейсерских режимов полета для самолета Ан-24 и рекомендации по их применению.
A. Режим наибольшей продолжительности полета.Скорость на этом режиме наименьшая из крейсерских и равна скорости, рекомендованной для набора высоты с максимальной скороподъемностью, часовой расход топлива минимальный. Этот режим рекомендуется для полетов в зоне ожидания и при восстановлении ориентировки.
Б. Режим наибольшей дальности полета.На этом режиме километровый расход топлива наименьший. Рекомендуется для маршрутных полетов с ограниченным запасом топлива и для полетов по расписанию при попутном ветре.
B. Режим наибольшей крейсерской мощности (0,85 от номинала, 52° по УПРТ).Этот крейсерский режим применяется для полета по расписанию при встречном ветре и в штиль. Продолжительность работы двигателей на этом режиме неограниченна.
Г. Номинальный режим работы двигателей (65° по УПРТ).Этот режим используется при наборе высоты и в особых случаях полета (полет в условиях обледенения, при отказе одного из двигателей, высоких температурах наружного воздуха, обходе грозы) в течение не более одного часа непрерывной работы.
Таблица 24. 1
Крейсерские режимы горизонтального полета самолета Ан-24
Полетный вес, т | А | Б | В | Г | ||||||
Режим наибольшей продолжительности полета | Высота, км | Режим наибольшей дальности полета | Режим наибольшей крейсерской мощности (52±2° по УПРТ) | Высота, км | Номинальный режим работы двигателей (65° по УПРТ) | |||||
Vпр км/ч | Vи км/ч | Vпр км/ч | Vи км/ч | Vпр км/ч | Vи км/ч | Vпр км/ч | Vи км/ч | |||
21,0 | ||||||||||
20,5 | ||||||||||
20,0 | ||||||||||
19,5 | ||||||||||
19,0 | ||||||||||
Режим полета выбирается в зависимости от условий полета. Наивыгоднейшая скорость полета для нужного режима находится по табл. 24.1 сучетом полетного веса самолета и высоты полета. Рассмотрим на примере порядок пользования таблицей крейсерских режимов.
Пример. Полетный вес самолета 0 = 19000 км; по маршруту полета прогнозируется встречно-боковой ветер; высота полета H=6000 м; температура воздуха на земле t0= + 15°. Определить наивыгоднейший режим полета и наивыгоднейшую скорость.
Решение. 1. Выбираем наивыгоднейший режим полета. Так как по маршруту полета прогнозируется встречно-боковой ветер, то для полета по расписанию необходимо использовать режим наибольшей крейсерской мощности.
2. Находим по табл. 24.1 наивыгоднейшую скорость полета. По данным о долетном весе самолета и высоте полета получаем: Vи = 462 км/ч, Vпр =362 км/ч.
Все данные таблицы режимов соответствуют условиям полета при стандартной температуре наружного воздуха и нормальной регулировке двигателей. При увеличении или уменьшении температуры наружного воздуха на каждые 5°С от стандартной расход топлива соответственно уменьшается или увеличивается примерно на 1 % при выдерживании одной и той же скорости полета.
Полет на режимах А и Б осуществляется путем выдерживания заданной скорости по прибору, для чего необходимо регулировать работу двигателей, не превышая при этом режима 52° по УПРТ.
Полет на режимах В и Г осуществляется путем выдерживания заданного режима работы двигателей (заданного УПРТ), но при этом скорость полета не должна превышать наибольшую допустимую скорость по прибору (460 км/ч).
Часовой расход топлива и истинную воздушную скорость полета для полетных весов, не указанных в табл. 24.1, следует определять путем интерполирования или принимать для ближайшего полетного веса.
Дата добавления: 2019-02-08; просмотров: 668;