Kinematic Equations


We now use the defining equations for acceleration and velocity to derive two of our kinematic equations:

 

υxf = υxi + axt (for constant ax) (3)

 

and

 

xf = xi + υxi t+1/2axt2 (for constant ax) (4)

 

The defining equation for acceleration,

 

ax =dυx/dt

 

may be written as x = ax dt or, in terms of an integral (or antiderivative), as

 

 

3. Summary(Lectures 1 – 3 )

Definitions


 

When a particle moves along the x axis from some initial position xi to some final position xf , its displacementis

Δx = xf - xi

The average velocityof a particle during some time interval is the displacement Δx divided by the time interval Δt during which that displacement occurs:

υx,avg = Δx/Δt

The average speedof a particle is equal to the ratio of the total distance it travels to the total time interval during which it travels that distance

υavg = d/Δt

The instantaneous velocity of a particle is defined as the limit of the ratio Δx/Δt as Δt approaches zero. By definition, this limit equals the derivative of x with respect to t, or the time rate of change of the position:

The average accelerationof a particle is defined as the ratio of the change in its velocity Δυx divided by the time interval Δt during which that change occurs:

 



Дата добавления: 2016-07-18; просмотров: 1114;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.007 сек.