Герконовое и поляризованное реле, устройство и принцип работы.
Наименее надёжным узлом электромагнитных реле является контактная система. Электрическая дуга или искра, образующиеся при размыкании и замыкании контактов,
приводят к их быстрому разрушению. Этому также способствуют окислительные процессы и покрытие контактных поверхностей слоем пыли, влаги, грязи. Существенным недостатком электромагнитных реле является и наличие трущихся механических деталей, износ которых также сказывается на их работоспособности. Попытки разместить контакты и электромагнитный механизм в герметизированном объеме с инертным газом не приводят к положительным результатам из-за больших технологических конструктивных трудностей, а также из-за того, что контакты при этом не защищаются от воздействия
продуктов износа и старения изоляционных материалов. Другим недостатком электромагнитных реле является их инерционность, обусловленная значительной массой подвижных деталей. Для получения необходимого быстродействия приходится применять специальные схемы форсировки, что приводит к снижению надежности и росту потребляемой мощности.
Перечисленные недостатки электромагнитных реле привели к созданию реле с герметичными контактами (герконами).
Простейшее герконовое реле с замыкающим контактом изображено на рис.8, а. Контактные сердечники (КС) I и 2 изготавливаются из ферромагнитного материала с высокой магнитной проницаемостью (пермаллоя) и ввариваются в стеклянный герметичный баллон 3. Баллон заполнен инертным газом — чистым азотом или азотом с небольшой (около 3 %) добавкой водорода. Давление газа внутри баллона составляет (0,4—0,6) • 105 Па. Инертная среда предотвращает окисление КС. Баллон устанавливается в обмотке управления 4. При подаче тока в обмотку возникает магнитный поток Ф, который проходит по КС 1 и 2 через рабочий зазор d между ними и замыкается по воздуху вокруг обмотки 4. Упрощенная картина магнитного поля показана на рис.9. Поток Ф при прохождении через рабочий зазор создает тяговую электромагнитную силу РЭ, которая, преодолевая упругость КС, соединяет их между собой. Для улучшения контактирования поверхности касания покрываются тонким слоем (2—50 мкм) золота, родия, палладия, рения, серебра и др.
При отключении обмотки магнитный поток и электромагнитная сила спадают и под действием сил упругости КС размыкаются. Таким образом, в герконовых реле отсутствуют детали, подверженные трению (места крепления якоря в электромагнитных реле).
В связи с тем что контакты в герконе управляются магнитным полем, герконы называют магнитоуправляемыми контактами.
На основе герконов могут быть созданы также реле с размыкающими и переключающими контактами. В герконе с переключающим контактом (рис.10, а) неподвижные КС 1, 3 и подвижный 2 размещены в баллоне 4. При появлении сильного магнитного поля КС 2 притягивается к КС 1 и размыкается с КС 3. Один из КС переключающего геркона (например 2) может быть выполнен из не магнитного материала (рис.10, б). Герконовое реле (рис.10, в) имеет два подвижных КС 1,2, два неподвижных КС 5,6 и две обмотки управления 7, 8. При согласном включении обмоток замыкаются КС 1 и 2. При встречном включении обмоток КС 1 замыкается с КС 5, а КС 2 с КС 6. При отсутствии тока в обмотках все КС разомкнуты. Герконовое реле (рис.10, г) имеет переключающий контакт 3 сферической формы. При согласном включении обмоток 7 и 8 контакт 3 притягивается к КС 1 и КС 2 и замыкает их. После отключения обмоток 7 и 8 и при согласном включении обмоток 9 и 10 контакт 3 замыкает КС 5 и КС 6. Так как КС герконов выполняют функции возвратной пружины, им придаются определенные упругие свойства. Упругость КС обусловливает возможность их вибрации («дребезга») после удара, который сопутствует срабатыванию. Одним из способов устранения влияния вибраций является использование жидкометаллических контактов. В переключающем герконе (рис.11, а) внутри подвижного КС 1 имеется капиллярный канал, по которому из нижней части баллона 4 поднимается ртуть 5.
Ртуть смачивает поверхности касания КС 1 с КС 2 или КС 3. В момент удара контактов при срабатывании возникает их вибрация. Из-за ртутной пленки на контактной поверхности КС 1 вибрация не приводит к разрыву цепи. В конструкции на рис.11,б между КС 2, КС 3 и ртутью 5 находится ферромагнитная изоляционная жидкость 6. При возникновении магнитного поля ферромагнитная жидкость 6 перемещается вниз, в положение, при котором поток будет наибольшим. Ртуть вытесняется вверх и замыкает КС 2 и КС 3. Следует отметить, что жидкометаллический контакт позволяет уменьшить переходное сопротивление и значительно увеличить коммутируемый ток. Наличие ртути удлиняет процесс разрыва контактов, что увеличивает время отключения реле.
Управление герконом можно осуществлять и с помощью постоянного магнита. Если постоянный магнит установлен вблизи геркона, его магнитный поток замыкается через КС, которые в результате этого находятся в замкнутом состоянии. Использование постоянного магнита совместно с управляющей катушкой позволяет создать герконовое реле с размыкающим контактом.
Конструкция герконового реле, показанная на рис.12, а, имеет разомкнутую магнитную цепь. По этой причине большая доля МДС катушки расходуется на проведение магнитного потока по воздуху. Кроме того, такая конструкция подвержена воздействию внешних магнитных полей, создаваемых расположенными рядом электротехническими устройствами. Конструкция (рис.12, а)может и сама явиться источником электромагнитных помех для этих устройств. Для устранения этого недостатка магнитная система герконового реле заключается в кожух (экран) из магнитомягкого материала (рис.12, б, в). При этом увеличивается магнитная проводимость и снижается МДС срабатывания. С целью увеличения эффективности экрана паразитный зазор е (рис.12,6) стараются уменьшить либо увеличить его площадь (рис.12, в). Регулирование значений МДС срабатывания и отпускания в условиях серийного производства может производиться за счет либо изменения зазора е (рис.12,6), либо изменения положения магнитного шунта (рис.12, г), либо i осевого
смещения геркона в обмотке. Герконы могут быть установлены как внутри (рис.13, а), так и снаружи управляющей обмотки (рис.13,6).
Условия работы герконов в многоцепевых герконовых реле характеризуются следующими особенностями. Во-первых, даже герконы одного типа и из одной партии имеют технологический разброс по МДС срабатывания и МДС отпускания.
Рис.12. Конструктивные выполнения герконовых реле.
Во-вторых, из-за неравномерности магнитного поля первым срабатывает геркон, находящийся в области с большей напряженностью поля. В-третьих, срабатывание одного геркона приводит к магнитному шунтированию других, в результате МДС срабатывания второго геркона после срабатывания первого увеличивается. В этом отношении конструкция с внешним расположением герконов (рис.13,б) предпочтительнее, чем с внутренним, так как обеспечивает меньшее взаимное влияние соседних герконов. Число герконов в одном реле может достигать 12 и более. По перечисленным причинам разные контакты многоцепевых герконовых реле замыкаются и размыкаются неодновременно, что является Рис.13. Многоцепевые герконовые реле.
их недостатком по сравнению с электромагнитными реле обычного типа.
Герконовые реле разнообразны по конструкции и назначению. На рис.14 показан принцип действия герконового реле тока. В реле контроля большого тока используется компоновка, показанная на рис.14. Контролируемый ток I проходит по шине 1. Магнитное поле этого тока замыкается вокруг шины и по КС геркона 2. Ток срабатывания геркона может регулироваться за счет изменения угла и расстояния х между шиной и герконом.
Наименьший ток срабатывания имеет место при = 90°. При =0 геркон не срабатывает при любом значении тока, так как магнитный поток в направлении продольной оси КС равен нулю.
Если кроме основного поля управления (МДС Fy) создать дополнительное поляризующее магнитное поле за счет специальной обмотки (МДС Fn) или постоянного магнита, то герконовое реле становится поляризованным. Если
то под действием МДС Fn контакты геркона замкнутся. Для размыкания контактов МДС обмотки управления Fy должна быть меньше Fn и иметь обратный знак. Если продолжать увеличивать Fy, то при определенном ее значении произойдет повторное замыкание контактов геркона. В общем случае можно написать
где МДС поляризации Fn может быть положительной (совпадать по знаку с Fy) или отрицательной. В последнем случае
Для отпускания геркона имеем
Поляризованные реле имеют значительно большую чувствительность по сравнению с неполяризованными. Мощность срабатывания их в 10-50 раз меньше, чем у неполяризованных реле. Поляризованные реле имеют высокую термическую стойкость и допускают продолжительное протекание тока до 20-30-кратного по отношению к току срабатывания. Вследствие малого хода якоря, легкости подвижной системы, малых постоянных времени катушек время срабатывания поляризованных реле может быть 2-3 мс. Разрывная способность контактов достигает 10-30 Вт. Поляризованные реле допускают большую частоту срабатывания и имеют высокую механическую и коммутационную износостойкость. Применяются они как реле защиты, автоматики и связи, реже — как реле управления электроприводами.
Реле могут выполняться с последовательной, параллельной или мостиковой магнитной цепью, с поляризацией от постоянного магнита или электромагнита.
В отличие от неполяризованных реле, у которых якорь может находиться только в двух положениях притянутом отпущенном), поляризованные реле могут выполняться с якорем, занимающим как два, так и три положения.
На рис.15изображено поляризованное реле типа ТРМ,применяемое в схемах телеграфии и в устройствах автоматики. Реле состоит из двух сердечников с катушками 7, двух П-образных постоянных магнитов 6, якоря 5, контактной системы — неподвижных 3 и подвижных. 2 контактов, основания 9, штепсельного разъема 10 и чехла 8.
Магнитная цепь реле построена по дифференциальной схеме и имеет нейтральную регулировку. Якорь укреплен на оси, вращающейся во втулках, запрессованных в корпусе. Контактная система (2 и 3) состоит из двух неподвижных стоек с микрометрическими контактными винтами 4, позволяющими производить регулировку зазоров между контактами, и подвижных контактов, прикрепленных к двум плоским пружинам 1.
В поляризованных реле контакты приводятся в действие поляризованным электромагнитом, в котором на якорь действуют два потока: поляризующий, создаваемый постоянным магнитом, и поток, создаваемый катушкой, по которой проходит управляющий ток.
Отличительной особенностью поляризованного электромагнита является изменение направления силы, действующей на якорь, при изменении направления тока в катушке. На рис.16, а показана поляризованная система, получившая большое применение благодаря своей чувствительности и быстродействию. На том же рисунке дана примерная картина потоков в системе. Потоки постоянного магнита в зазорах d1 и d2 равны.
Рис.16. Поляризованное реле.
Следует отметить, что сила нажатия подвижного контакта на неподвижный определяется разностью зазоров d1 и d2. Чем ближе зазор d1 к зазору d2, тем меньше сила, действующая на контакты.
Поляризованные реле могут иметь различное исполнение контактной системы (рис.17). В первом исполнении контакты регулируются так, как показано на рис.17, а. При подаче тока в направлении срабатывания размыкается левый и замыкается правый контакты. При отключении тока снова замыкается левый контакт (однопозиционная настройка с преобладанием). В случае, изображенном на рис.17,б система имеет двухпозиционную настройку. Положение контактов зависит от полярности предыдущего импульса тока.
Если якорь укреплен на плоской пружине, как это показано на рис.17, в, то он находится в нейтральном положении. В зависимости от полярности тока замыкается левый или правый контакт. После отключения тока якорь возвращается в нейтральное положение.
Рис.17. Исполнения контактной системы поляризованного реле.
Дата добавления: 2016-07-05; просмотров: 4627;