Формы размножения организмов


1. Размножение — воспроизведение организмами себе подобных, передача наследственной информации от родителей потомству. Значение размножения — обеспечение преемственности между поколениями, продолжение жизни вида, увеличение численности особей в популяции и их расселение на новые территории.

2. Особенности полового размножения — возникновение нового организма в результате оплодотворения, слияния мужской и женской гамет с гаплоидным набором хромосом. Зигота — первая клетка дочернего организма с диплоидным набором хромосом. Объединение материнского и отцовского наборов хромосом в зиготе — причина обогащения наследственной информации потомства, появления у него новых признаков, которые могут повысить приспособленность к жизни в определенных условиях, возможность выжить и оставить потомство.

3. Оплодотворение у растений. Значение водной среды для процесса оплодотворения у мхов и папоротников. Процесс оплодотворения у голосеменных в женских шишках, а у покрытосеменных — в цветке.

4. Оплодотворение у животных. Внешнее оплодотворение — одна из причин гибели значительной части половых клеток и зигот. Внутреннее оплодотворение у членистоногих, пресмыкающихся, птиц и млекопитающих — причина наибольшей вероятности образования зиготы, защиты зародыша от неблагоприятных условий среды (хищников, колебаний температуры и пр.).

5. Эволюция полового размножения по пути возникновения специализированных клеток (гаплоидных гамет), половых желез, половых органов. Пример: у голосеменных на чешуйках шишки располагаются пыльники (место образования мужских половых клеток) и семязачатки (место образования яйцеклетки); у покрытосеменных в пыльниках формируются мужские гаметы, а в семязачатке — яйцеклетка; у позвоночных животных и человека в семенниках образуются сперматозоиды, а в яичниках — яйцеклетки.

Бесполое размножение
Бесполое размножение осуществляется при участии лишь одной родительской особи и происходит без образования гамет. Дочернее поколение у одних видов возникает из одной или группы клеток материнского организма, у других видов — в специализированных органах. Различают следующие способы бесполого размножения: деление, почкование, фрагментация, полиэмбриония, споро­образование, вегетативное размножение.
Деление — способ бесполого размножения, характерный для одноклеточных организмов, при котором материнская особь делится на две или большее количество дочерних клеток.
Можно выделить: а) простое бинарное деление (прокариоты), б) митотическое бинарное деление (простейшие, одноклеточные водоросли), в) множественное деление, или шизогонию (малярийный плазмодий, трипаносомы). Во время деления парамеции (1) микронуклеус делится митозом, макронуклеус — амитозом. Во время шизогонии (2) сперва многократно митозом делится ядро, затем каждое из дочерних ядер окружается цитоплазмой, и формируются несколько самостоятельных организмов.
Почкование — способ бесполого размножения, при котором новые особи образуются в виде выростов на теле родительской особи (3). Дочерние особи могут отделяться от материнской и переходить к самостоятельному образу жизни (гидра, дрожжи), могут остаться прикрепленными к ней, образуя в этом случае колонии (коралловые полипы).
Фрагментация (4) — способ бесполого размножения, при котором новые особи образуются из фрагментов (частей), на которые распадается материнская особь (кольчатые черви, морские звезды, спирогира, элодея). В основе фрагментации лежит способность организмов к регенерации.
Полиэмбриония — способ бесполого размножения, при котором новые особи образуются из фрагментов (частей), на которые распадается эмбрион (монозиготные близнецы)
.Вегетативное размножение — способ бесполого размножения, при котором новые особи образуются или из частей вегетативного тела материнской особи, или из особых структур (корневище, клубень и др.), специально предназначенных для этой формы размножения. Вегетативное размножение характерно для многих групп растений, используется в садоводстве, огородничестве, селекции растений (искусственное вегетативное размножение).
Половое размножениеПоловое размножение осуществляется при участии двух родительских особей (мужской и женской), у которых в особых органах образуются специализированные клетки — гаметы.
Процесс формирования гамет называется гаметогенезом, основным этапом гаметогенеза является мейоз. Дочернее поколение развивается из зиготы — клетки, образовавшейся в результате слияния мужской и женской гамет.
Процесс слияния мужской и женской гамет называется оплодотворением. Обязательным следствием полового размножения является перекомбинация генетического материала у дочернего поколения.
В зависимости от особенностей строения гамет, можно выделить следующиеформы полового размножения: изогамию, гетерогамию и овогамию.
Изогамия — форма полового размножения, при которой гаметы (условно женские и условно мужские) являются подвижными и имеют одинаковые морфологию и размеры.
Гетерогамия — форма полового размножения, при которой женские и мужские гаметы являются подвижными, но женские — крупнее мужских и менее подвижны.
Овогамия — форма полового размножения, при которой женские гаметы неподвижные и более крупные, чем мужские гаметы. В этом случае женские гаметы называются яйцеклетками, мужские гаметы, если имеют жгутики, — сперматозоидами, если не имеют, — спермиями.
9. Химический состав клетки. Роль воды жизнедеятельности организма.

1. Элементарный состав клетки. Сходство химического состава клеток разных организмов как доказательство их родства. Основные химические элементы, входящие в состав клетки: кислород, углерод, водород, азот, калий, сера, фосфор, хлор, магний, натрий, кальций, железо.

2. Роль различных химических элементов в клетке. Кислород, углерод, водород и азот — основные химические элементы, из которых состоят молекулы органических веществ. Такие элементы, как калий, натрий и хлор, — входят в состав плазмы крови, участвуют в обмене веществ и обеспечивают постоянство внутренней среды организма — гомеостаз. Сера — элемент, входящий в состав некоторых белков, фосфор входит в состав всех нуклеиновых кислот, магний — хлорофилла, железо — гемоглобина (гемоглобин — белок, входящий в состав эритроцитов и обеспечивающий перенос кислорода и углекислого газа в организме), кальций — костей, раковин моллюсков.

3. Химические вещества, входящие в состав клетки: неорганические (вода, минеральные соли) и органические (углеводы, жиры, белки, нуклеиновые кислоты, АТФ).

4. Минеральные соли, их роль в клетке. Содержание минеральных солей в клетке в виде катионов (К+, Na+, Ca2+, Mg2+) и анионов (—НРО|~, — Н2РС>4, —СГ, —НСС*з). Уравновешенность содержания катионов и анионов в клетке, обеспечивающая постоянство внутренней среды организма. Примеры: в клетке среда слабощелочная, внутри клетки высокая концентрация ионов К+, а в окружающей клетку среде — ионов Na+. Участие минеральных солей в обмене веществ.

5. Вода. Содержание воды в клетке — от 40 до 98% ее массы. Роль воды в клетке:

 

1. Элементарный состав клеток, наибольшее содержание в ней атомов углерода, водорода, кислорода, азота (98%), небольшое количество других элементов. Сходство элементарного состава тел живой и неживой природы — доказательство их единства.

2. Химические вещества, входящие в состав клетки: неорганические (вода и минеральные соли) и органические (белки, нуклеиновые кислоты, ли-пиды, углеводы, АТФ).

3. Состав углеводов — атомы углерода, водорода и кислорода. Простые углеводы, моносахариды (глюкоза, фруктоза); сложные углеводы, полисахариды (клетчатка, или целлюлоза). Моносахариды — мономеры полисахаридов. Функции простых углеводов — основной источник энергии в клетке; функции сложных углеводов — строительная и запасающая (оболочка растительной клетки состоит из клетчатки).

4. Липиды (жиры, холестерин, некоторые витамины и гормоны), их элементарный состав — атомы углерода, водорода и кислорода. Функции ли-пидов: строительная (составная часть мембран), источник энергии. Роль жиров в жизни ряда животных, их способность длительное время обходиться без воды благодаря запасам жира.

5. Белки — макромолекулы (имеют большую молекулярную массу). Они состоят из десятков, сотен аминокислот. Состав аминокислот, карбоксильная (кислая) и аминная (основная) группы — основа образования между аминокислотами пептидных связей. Разнообразие аминокислот (примерно 20). Разная последовательность соединения аминокислот в молекулах белков — причина их огромного разнообразия.

6. Структуры молекул белка: первичная (последовательность аминокислот), вторичная (форма спирали), третичная (более сложная конфигурация). Обусловленность структур молекул белков различными химическими связями. Разнообразие белков — причина большого числа признаков у организма. Многофункциональность белков: строительная, транспортная, сигнальная, двигательная, энергетическая, ферментативная (белки входят в состав ферментов).

7. Нуклеиновые кислоты (НК), их виды: ДНК, иРНК, т РНК, рРНК, НК — полимеры, их мономеры — нуклеотиды. Состав нуклеотидов: углевод (рибоза в РНК и дезоксирибоза в ДНК), фосфорная кислота, азотистое основание (в ДНК — аденин, ти-мин, гуанин, цитозин, в РНК — те же, но вместо тимина урацил). Функции НК — хранение и передача наследственной информации, матрица для синтеза белков, транспортировка аминокислот.

8. Структура молекулы ДНК: двойная спираль, основа ее образования — принцип комплементарно-сти, возникновение связей между дополнительными азотистыми основаниями (А=Т и Г=Ц). РНК — од-ноцепочечная спираль, состоит из нуклеотидов.

9. АТФ — аденозинтрифосфорная кислота, нук-леотид, состоит из аденина, рибозы и трех остатков фосфорной кислоты, соединенных макроэргически-ми (богатыми энергией) связями. АТФ — аккумулятор энергии, используемой во всех процессах жизнедеятельности .


 

 



Дата добавления: 2016-05-30; просмотров: 2422;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.