Датчики температуры, давления, уровня, пути
В процессе работы электротехнического и технологического оборудования возникает необходимость контролировать происходящие при этом процессы, для этого надо иметь информацию о состоянии и текущих значениях скорости, тока, момента, ЭДС, температуры, давления, уровня, положения, освещенности и т. д. Устройства, которые выдают подобную информацию в виде электрических сигналов, получили название измерительных преобразователей или датчиков.
Сигнал от датчика подается на устройство сравнения вместе с заданным сигналом, сигнал разности подается на усилитель, и этот усилительный сигнал действует на исполнительный орган, изменяющий состояние регулируемого (контролируемого) объекта.
Классифицируются датчики по следующим признакам:
- по принципу преобразования электрических и неэлектриче
ских величин в электрические величины датчики подразделяются на
пьезоэлектрические, тепловые, давления, уровня, пути, электромаг
нитные датчики, фотодатчики, оптроны, герконы, датчики Холла;
- по конструкции - контактные и бесконтактные;
- по роду тока и величине напряжения;
- по току выходного исполнительного органа;
- по конструктивным особенностям и степени защиты.
Тепловые датчики.Принцип действия тепловых датчиков основан на использовании тепловых процессов (нагрева, охлаждения, теплообмена). Для измерения температуры преобразование происходит в промежуточную величину, например в ЭДС, электрическое сопротивление и другие величины.
Из всех существующих методов измерения температуры наиболее широко применяются термоэлектрические.
Термоэлектрическое явление заключается в том, что при соединении двух проводов А и В (рис. 5.1) из разных материалов (термопара) и создании разности температур между точкой соединения Т1 и точками свободных концов Т0 возникает ЭДС, пропорциональная разности функций температур:
Е(Т1,Т0) = f(T1)-f(T0).
Значение термо ЭДС зависит от материалов термопары и колеблется в пределах от долей до сотен милливольт на 100 °С.
Наряду с термоэлектрическими датчиками температуры применяются терморезистивные датчики, называемые термометрами сопротивления.
А
В
Рис. 5.1. Схема термоэлектрического преобразователя
Датчики уровня.Служат для контроля уровня жидкостей в резервуарах и для подачи сигналов о регулировании этого уровня. Датчики уровня бывают: электродные, поплавковые, мембранные.
Электродный датчик применяется для контроля уровня электропроводных жидкостей. Датчик имеет короткий 1 и два длинных электрода 2, 3, закрепленные в коробке зажимов (рис. 5.2). Короткий электрод является контактом верхнего уровня, а длинный - нижнего уровня жидкости. Датчик соединяется проводами со станцией управления двигателем насоса. Касание воды короткого электрода приводит к отключению пускателя насоса, понижение уровня воды ниже длинного электрода дает команду на включение насоса.
Рис. 5.2. Электродный датчик
Электроды датчика включены в цепь катушки промежуточного реле К, которое включается во вторичную обмотку понижающего трансформатора напряжением 12 В. При подъеме уровня жидкости в резервуаре до уровня короткого электрода 1 образуется электрическая цепь: вторичная обмотка трансформатора - катушка реле К -электрод 1 - жидкость - электрод 2. Реле сработает и становится на самопитание через свой контакт К и электрод 3, при этом контакты 6 реле дают команду на отключение электродвигателя насоса. При понижении уровня жидкости ниже уровня электрода 3 реле отключается и включает электродвигатель насоса.
Поплавковый датчик (реле) применяется в отапливаемых помещениях для контроля уровня неагрессивных жидкостей. На рис. 5.3 показано схематическое устройство реле. В резервуар 10, погружается поплавок 1, подвешенный на гибком канате через блок 3 и уравновешенный грузом 6. На канате закреплены два упора 2 и 5, которые при предельных уровнях жидкости в резервуаре поворачивают коромысло 4 контактного устройства 8. При поворотах коромысло замыкает соответственно контакты 7 или 9, включающие или отключающие электродвигатель насоса.
Рис. 5.3. Поплавковый датчик (реле)
Датчики пути. Электроконтактные датчики представляют собой конечные и путевые выключатели, микропереключатели. Они кинематически связаны с рабочими механизмами и управляют приводом в зависимости от пути, пройденного рабочим механизмом. Выключатель, ограничивающий ход рабочего механизма, называется конечным выключателем. Путевые выключатели могут координировать работу нескольких приводов, производя их пуск, останов, изменение скорости в зависимости от положения, занимаемого механизмом рабочей машины.
Принцип действия датчиков основан на том, что их устанавливают на неподвижных частях рабочих органов в определенном положении, а движущиеся рабочие органы, на которых укреплены кулачки, достигнув заданного положения, воздействуют на датчики, вызывая их срабатывание.
По характеру перемещения измерительного (подвижного) органа выключатели подразделяются на нажимные, когда шток совершает прямолинейное движение и рычажные, когда движение передается через устройство в виде рычага, поворачивающегося на некоторый угол.
Выключатели, у которых срабатывание контактов зависит от скорости движения упора, называют выключателями простого действия, а выключатели, у которых переключение не зависит от скорости движения упора, называют моментными.
Нажимные выключатели выпускают в основном простого действия (рис. 5.4).
а) б)
Рис. 5.4. Датчик пути нажимной
Выключатель состоит из основания 1, неподвижных контактов 6, штока 4, опирающегося на сферическую поверхность втулки 7, несущей мостики подвижных контактов 5.
Для более надежного включения подвижные контакты 5 и неподвижные 6 поджимаются пружиной 2. При воздействии усилия шток 4 перемещается и контактные мостики переключают, т. е. отключают размыкающие и включают замыкающие контакты.
Бесконтактные путевые выключатели.В схемах управления электроприводами станков, механизмов и машин применяются преобразователи пути, работающие без механического воздействия со стороны движущегося упора. Широкое распространение получили бесконтактные переключатели щелевого типа с транзисторными усилителями, работающими в генераторном режиме. На рис. 5.5, а показан общий вид переключателя типа БВК-24. Его магнитопровод, размещенный в корпусе 4, состоит из двух ферритовых сердечников 1 и 2 с воздушным зазором шириной 5-6 мм между ними. В сердечни-
ке 1 размещается первичная обмотка wк и обмотка положительной обратной связи wп.с, в сердечнике 2 - обмотка отрицательной обратной связи wо.с. Такой магнитопровод исключает влияние внешних магнитных полей. Катушки обратной связи включены последовательно - встречно. В качестве переключающего элемента используется алюминиевый лепесток (пластинка) 3 толщиной до 3 мм, который может перемещаться в щели (в воздушном зазоре) магнитной системы датчика.
а)
б)
Рис. 5.5. Бесконтактный путевой переключатель БВК-24: а - общий вид; б - схема электрическая принципиальная
Если лепесток находится вне сердечника, то разность напряжений, индуктируемых в обмотках wnc и wо.с, будет положительной, транзистор VT1 закрыт и генерация незатухающих колебаний в контуре wк - С3 (рис. 8.5, б) не возникает. При введении лепестка в щель датчика связь между катушками wк и wо.с ослабляется (поэтому лепесток еще называют экраном), на базу транзистора VT1 подается отрицательное напряжение и он открывается. В контуре wк - С3 возникает генерация и появляется переменный ток, который индуктирует ЭДС \в катушке wnc в цепи базы транзистора. В цепи базы транзистора VT1 происходит детектирование переменной составляющей тока базы. Транзистор открывается, вызывая срабатывание реле К.
Для стабилизации работы транзистора при колебаниях температуры и напряжения служит нелинейный делитель напряжения, состоящий из линейного элемента - R1, полупроводникового терморезистора R2 и диода VD2.
Погрешность срабатывания составляет 1-1,3 мм. Напряжение питания переключателя БВК-24 составляет 24 В.
Переключатель обладает высокой надежностью, большой допустимой частотой срабатывания и быстродействием.
Фотодатчики
Фотоэлементом называется электровакуумный, полупроводниковый или иной электроприбор, электрические свойства которого (сила тока, внутреннее сопротивление или ЭДС) изменяются под действием падающего на него светового излучения.
В зависимости от среды, в которой происходит движение электронов, фотоэлементы подразделяются на:
- электронные (вакуумные) фотоэлементы, в которых движение
электронов происходит в вакууме;
- ионные (газонаполненные) фотоэлементы, в которых при движе
нии электронов в разреженном газе происходит ионизация атомов газа;
- полупроводниковые - в которых освобожденные электроны
увеличивают проводимость приборов или создают ЭДС.
В электронных и ионных фотоэлементах используется внешний фотоэффект. Он заключается в том, что источник излучения сообщает части электронов вещества дополнительную энергию, достаточную для выхода их из данного вещества в окружающую среду (вакуум или разреженный газ).
В фоторезисторах (фотосопротивлениях) используется внутренний фотоэффект, который заключается в том, что источник излучения вызывает увеличение энергии у части электронов вещества, ионизацию части атомов и образование новых носителей зарядов - свободных электронов и дырок, вследствие чего электрическое сопротивление вещества уменьшается.
В полупроводниковых фотоэлементах - фотодиодах и фототриодах используется фотоэффект возникновения ЭДС.
Фоторезистор - полупроводниковый прибор, электрическое сопротивление которого резко изменяется под действием падающего на него излучения.
Фоторезистор (рис. 5.6, а) представляет собой стеклянную пластинку 1, на которую путем напыления в вакууме нанесен тонкий
слой полупроводника 2, а по краям выведены два металлических электрода 3. При изготовлении полупроводниковый слой покрывается прозрачным лаком для защиты от влаги и механических повреждений. Пластинку помещают в корпус с двумя выводами.
Через неосвещенный фоторезистор проходит малый ток, называемый темновым Iт. При освещении фоторезистора через него идет общий ток Iсв.
Разность между общим и темновым токами называется фототоком Iф.
В качестве полупроводника применяется сернистый свинец (фотоэлемент ФСА), селенид кадмия (фоторезистор ФСД), сернистый кадмий (фоторезистор ФСК).
Свет
а)
б)
Рис. 5.6. Фоторезистор: а — устройство; б — условное графическое и буквенное обозначение
св |
// BL
- и +
U
а) б)
Рис. 5.7. Фоторезистор: а - схема соединения; б - вольтамперная характеристика
Фоторезистор характеризуется интегральной чувствительностью к световому потоку, мкА/лм
Фоторезисторы обладают значительной инерцией, нелинейной зависимостью фототока от светового потока и сильной зависимостью электрического сопротивления от температуры, что является их недостатком.
Фоторезисторы нашли широкое применение в промышленной электронике, автоматике, вычислительной технике.
Полупроводниковый фотоэлемент - представляет собой прибор, в котором под действием падающего на него излучения возникает ЭДС, называемая фото-ЭДС.
Фотодатчики используют в схемах защиты, обеспечивающих отключение установки при попадании в опасную зону обслуживающего персонала, для подсчета деталей, контроля целостности режущего инструмента.
Фотореле разрабатываются на базе фоторезисторов (рис. 8.8) и применяются для управления наружным освещением улиц, площадей, территорий предприятий.
Рис. 5.8. Схема электрическая принципиальная фотореле
Дата добавления: 2016-06-29; просмотров: 2571;