Енергія теплоти океану


Світовий океан — найбільший природний колектор сонячного випромінювання. У ньому між теплими, поглинаючими сонячне випромінювання поверхневими водами і холоднішими придонними досягається різниця температур в 20°С. Це забезпечує безперервно поповнюваний запас теплової енергії, яка принципово може бути перетворена інші види. Сам термін перетворення теплової енергії океану ОТЕС— ocean thermal energy conversion— означає перетворення деякої частини цієї теплової енергії в роботу і далі в електроенергію.

 

Рис. 7. Схема перетворення теплової енергії океану. Теплова машина використовує перепад температур між поверхневими і глибинними водами океану:

1 — подача теплої води; 2 — випарник; 3 — насос подачі робочого тіла; 4 — турбіна; 5 — генератор; 6 — конденсатор; 7 — подача холодної води; 8 — поверхня океану; 9 — океанські глибини

 

На рис. 7 приведена схема однієї з установок, що дозволяють здійснити процес такого перетворення. По суті — це теплова машина, що наводиться в дію різницею температур між «холодною» Тс -водою, піднятою з відповідної глибини, і «гарячою» водою з температурою Тh = Тс + ΔТ, забраною з поверхні. Робоча рідина (робоче тіло), циркулюючи за замкнутою схемою, відбирає тепло від гарячої води в теплообміннику випарника, в паровій фазі наводить в дію турбіну, пов'язану з генератором, а потім конденсується в охолоджуваному холодною водою конденсаторі. На цьому цикл завершується.

Нижче в деталях обговорюються лише системи, що працюють по замкнутому циклу. Можна уявити собі і інші системи, що наприклад використовують як робоче тіло саму морську воду і що працюють по відкритому циклу. Проте викладені тут і в наступному параграфі фізичні і географічні відомості можуть бути застосовані до будь-яких систем ОТЕС.

Почнемо з визначення Р0 — потужності, що віддається теплою водою в ідеальній системі. Допустимо, що потік теплої води з об'ємною витратою Q поступає в систему при температурі Тh і покидає її при температурі Тс (температура холодних глибинних вод). При визначенні Р0 ми, вочевидь, робимо припущення про ідеальний теплообмінник. У такій системі, що ідеалізується, при ΔТ = Тh — Тс

(1)

 

На основі другого початку термодинаміки максимальна механічна потужність, яку можна отримати від перетворення теплового потоку,

(2)

де

(3)

є ККД ідеальної теплової машини Карно, що працює при перепаді температур між Тh і Тс = Тh – ΔТ. Безумовно, вихід в разі реальної системи буде істотно нижчий, ніж Р1. Реальні теплові машини працюють не по циклу Карно, швидше, їх цикл ближче до ідеального циклу парової турбіни Ренкина. Проте ці вирази дозволяють проілюструвати можливості і обмеження ОТЕС. Згідно (1) — (3) ідеальна механічна вихідна потужність перетворювача теплової енергії рівна

(4)

Таким чином, для здобуття значних потужностей потрібні істотні потоки води навіть для випадку максимально можливого в океані перепаду температур. Це у свою чергу вимагає вживання громіздких і відповідно дорогих технічних засобів.

Зважаючи на те що Р1 залежить від квадрата ΔТ досвід підказує економічну привабливість ідеї ОТЕС лише в районах, де ΔТ≥15° С. Такі райони лежать в тропіках. Активно ведуться дослідження з проблеми ОТЕС на острові Гавайї (20° північної широти, 160° західної довготи), на острові Науру (0° північної широти, 166° східної довготи), в течії Гольфстрім поблизу півострова Флорида. У тропічних районах Тh і Тс мало змінюються від сезону до сезону, що повинне забезпечувати стабільне вироблення енергії протягом всього року.

Безумовно, стабільність і незалежність від капризів погоди — головні переваги ОТЕС як поновлюваного джерела енергії. Нижче перераховані інші важливі переваги ОТЕС.

1) У відповідних для розміщення перетворювачів районах обмеження на значення перетворюваних ресурсів накладають лише розміри установок.

2) Створення економічно виправданих установок вимагає лише деякого доопрацювання таких широко апробованих пристроїв, як теплообмінники і турбіни. Жодних абсолютно нових або технічно неможливих пристроїв не потрібно.

 

Головні недоліки — вартість і масштаби установок. Якби удалося досягти фактичної потужності Р1, то вартість стала б мінімальною, але принципові обмеження накладають необхідність враховувати в'язкість рідин і недосконалість теплообмінників. Приведені питомі витрати на створення однієї не так давно запущеної експериментальної океанської термальної електростанції (ОТЕС, не плутати з латинською ОТЕС) склали 40 000 долл/кВт встановленої потужності. Проте аналіз, показує, що великомасштабні серійні ОТЕС будуть значно економічнішими, що робить саму концепцію ОТЕС гідною уваги. Відповідні роботи активно ведуться в США, Франції і Японії.

Один з чинників збільшення вартості систем ОТЕС — дорожнеча їх обслуговування у відкритому морі і передачі енергії на берег. Проте існують прибережні райони, де дно різко падає і устаткування ОТЕС може бути розміщене на суші. Одне з таких місць — острів Науру в південній частині Тихого океану.

 

Воднева енергетика

Водень H2 є ідеальним паливом з високою теплотою згорання і нешкідливим продуктом горіння - водяною парою. В світі ведеться обширний об'єм досліджень в області «водневої енергетики» - здобуття і використання водню як енергоносію. Вжиток водню в світі в кінці XX століття складав близько 200 млрд. нм3/рік, з яких приблизно 100 млрд. йшло на виробництво аміаку і приблизно 80 млрд. - на інші потреби хімічної і нафтохімічної промисловості.

Водень є універсальним енергоносієм. Він може застосовуватися як паливо для двигунів внутрішнього згорання і газотурбінних установок, теплових електростанцій, в технологічних установках промисловості, в побуті. Висловлюються побоювання з приводу вибухонебезпечності «гримучого газу» - суміші водню з повітрям. Проте так само вибухонебезпечна і суміш природного газу з повітрям, відомі одиничні випадки аварій при її вибухах, що не заважає широкому вживанню природного газу. У м. Базель (Швейцарія) по міській мережі десятиліттями безаварійно подається газ, що містить 80% водню.

Водень можна отримувати термохімічним способом - нагрівом водяної пари у присутності різних каталізаторів. Так, реакція К2О + H2О → 2КОН приводить до утворення лугу їдкого калію. Потім додають калій і підводять теплоту при температурі 700°С, у результаті отримують реакцію 2КОН + 2К → К2О + Н2. Опрацьовуються проекти здобуття водню термохімічним гідролізом з використанням високотемпературних ядерних реакторів. Застосовуються також термохімічні способи здобуття водню з природного газу і нафти.

Найпоширеніший в даний час метод електролізу води заснований на реакції: електроенергія + 2Н2О → 2Н2 + О2. Електроліз може здійснюватися в рідкій фазі при низькій температурі. Працюють установки низькотемпературного електролізу води потужністю до 3 МВт. Електролітичні ванни обладнані нікелевими електродами, у воду додаються солі калія. ККД процесу електролізу досягає 85%. Для широкого поширення виробництва водню електролізом необхідна дешева електроенергія, яку можна отримувати з ТЕС і АЕС в години провалу навантаження.

Вживання водневого палива в автомобільних двигунах внутрішнього згорання наводить до підвищення їх ККД і різкому поліпшенню екологічної чистоти повітря в містах. Газоподібний водень має низьку щільність, тому його транспортування в балонах привело б до збільшення маси і зниження дальності пробігу автомобілів. Питання вирішується із застосуванням гідридів металів, що зв'язують водень (наприклад, гідриду титана ТіН2), які при невеликій масі здатні зв'язувати дуже значні об'єми водню. «Цеглинка» з гідриду титану об'ємом 10 см3 здатна зберігати в собі 1,68 нм3 водню. Водень витягується з гідридів при їх нагріві, наприклад, відпрацьованими в двигуні газами.

Водневе паливо застосовувалося в космічній техніці. Зокрема, на ньому працювали двигуни третього рівня ракети «Аполлон», на якій американські астронавти відвідували Луну. Цей ступінь масою 90,7 т ніс в своїх баках 242 м3 рідкого водню.

Вельми перспективне вживання водню в металургії. Залізняк відновлюватиметься воднем із здобуттям губчастого заліза при температурі 8ОО...115О°С. Сталь виплавлятиметься з губчастого заліза в дугових електропечах. Таким чином, будуть виключені сучасні енергоємні і екологічно брудні металургійні виробництва - коксохімічне, доменне, киснево-конвертерне. Таке виробництво освоюється в Японії. Його значення зростає у зв'язку з дефіцитом вугілля, що коксується. Так, Росія вимушена імпортувати для своїх домен вугілля, що коксується, з Карагандинського басейну (Казахстан). Водень може також служити сировиною у ряді хімічних технологій.

Паливні елементи. Водень є оптимальною сировиною для паливних елементів, в яких електричний струм генерується з хімічною енергією споживаних компонентів, минувши теплову енергію. Пряме перетворення хімічної енергії в електричну відбувається в паливних елементах без втрат, пов'язаних з необхідністю віддавати частину підведеної теплоти в довкілля по другому закону термодинаміки, тому паливні елементи мають високий ККД. При їх роботі практично не забруднюється довкілля. За принципом дії робота паливного елементу протилежна до електролізу води.

Воднево-кисневий паливний елемент (рис. 8) працює таким чином. Судина заповнена електролітом - наприклад, розчином сірчаної кислоти слабкої концентрації. У елемент вбудовані каталітично активні платинові електроди, один з яких є анодом, інший катодом. Вони сполучені зовнішнім електричним ланцюгом.

Рис. 8 - Воднево-кисневий паливний елемент

 

Електроди розділені напівпроникною мембраною. До одного електроду подається водень, до іншого - в еквівалентних кількостях кисень. На катоді молекули водню Н2 завдяки каталітичній дії платини розпадаються на атоми, які переходять в іони +Н. Електрони, що звільнилися, через зовнішній ланцюг спрямовуються до анода, створюючи в ланцюзі електричний струм. Позитивні водневі іони проходять через напівпроникну мембрану в іншу половину судини. На аноді електрони, що прийшли по електричному ланцюгу, атоми кисню і позитивні іони водню утворюють нейтральні молекули води Н2О, що поступають в розчин. Включене в електричний ланцюг навантаження споживає електроенергію, що виробляється паливним елементом.

В результаті реакції хімічна енергія пари реагентів водень-кисень перетворюється на електроенергію. Напруга в ланцюзі одного паливного елементу складає близько 1 В, тому елементи об'єднуються в батареї. ККД сучасних воднево-кисневих паливних елементів складає близько 80%.

Як вихідний енергоносій для паливних елементів можуть використовуватися окрім водню інші горючі гази, дешевші і доступніші. Як електроліт можуть застосовуватися розчини солей, що дозволяє підвищити температуру і швидкість хімічного перетворення. Паливні елементи поки що дорогі, і тому застосовуються в основному там, де ціна не грає вирішальної ролі (наприклад, в космічній техніці). Крупні транснаціональні компанії ведуть роботи по вдосконаленню процесів здобуття і використання водню і паливних елементів. Хоча водень і не відноситься до первинних енергоносіїв, його використання дає можливість істотно підвищити якість енергоспоживання і енерготехнологій.



Дата добавления: 2020-03-17; просмотров: 333;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.009 сек.