Цифровое кодирование.


При цифровом кодировании дискретной информации применяют потенциальные и импульсные коды.

В потенциальных кодах для представления логических единиц и нулей используется только значение потенциала сигнала, а его перепады, формирующие законченные импульсы, во внимание не принимаются. Импульсные коды позволяют представить двоичные данные либо импульсами определенной полярности, либо частью импульса – перепадом потенциала определенного направления.

Некоторые коды, используемые в локальных сетях, показаны на рис. … Далее будут рассмотрены их преимущества и недостатки.

Потенциальный код без возвращения к нулю. На рис. … а показан метод потенциального кодирования, называемый также кодированием без возвращения к нулю (Non Return to Zero, NRZ). Последнее название отражает то обстоятельство, что при передаче последовательности единиц сигнал не возвращается к нулю в течение такта Метод NRZ прост в реализации, обладает хорошей распознаваемостью ошибок (из-за двух резко отличающихся потенциалов), но не обладает свойством самосинхронизации. При передаче длинной последовательности единиц или нулей сигнал на линии не изменяется, поэтому приемник лишен возможности определять по входному сигналу моменты времени, когда нужно в очередной раз считывать данные.

Рис. . Способы дискретного кодирования данных.

Другим серьезным недостатком метода NRZ является наличие низкочастотной составляющей, которая приближается к нулю при передаче длинных последовательностей единиц или нулей.

В результате в чистом виде код NRZ в сетях не используется. Тем не менее используются его различные модификации, в которых устраняют как плохую самосинхронизацию кода NRZ, так и наличие постоянной составляющей.

Метод биполярного кодирования с альтернативной инверсией. Одной из модификаций метода NRZ является метод биполярного кодирования с альтернативной инверсией (Bipolar Alternate Mark Inversion, AMI). В этом методе (рис. … 6) используются три уровня потенциала – отрицательный, нулевой и положительный. Для кодирования логического нуля используется нулевой потенциал, а логическая единица кодируется либо положительным потенциалом, либо отрицательным, при этом потенциал каждой новой единицы противоположен потенциалу предыдущей.

Код AMI частично ликвидирует проблемы постоянной составляющей и отсутствия самосинхронизации, присущие коду NRZ. Это происходит при передаче длинных последовательностей единиц. Длинные же последовательности нулей также опасны для кода AMI, как и для кода NRZ – сигнал вырождается в постоянный потенциал нулевой амплитуды. Поэтому код AMI требует дальнейшего улучшения, хотя задача упрощается – осталось справиться только с последовательностями нулей.

В целом, для различных комбинаций бит на линии использование кода AMI приводит к более узкому спектру сигнала, чем для кода NRZ, а значит, и к более высокой пропускной способности линии. В коде AMI используются не два, а три уровня сигнала на линии, что также является недостатком.

Потенциальный код с инверсией при единице. Существует код, похожий на AMI, но только с двумя уровнями сигнала. При передаче нуля он передает потенциал, который был установлен в предыдущем такте (то есть не меняет его), а при передаче единицы потенциал инвертируется на противоположный. Этот код называется потенциальным кодом с инверсией при единице.

(Non Return to Zero with ones Inverted, NRZI). Этот код удобен в тех случаях, когда использование третьего уровня сигнала весьма нежелательно, например в оптических кабелях, где устойчиво распознаются два состояния сигнала – свет и темнота.

Биполярный импульсный код. Кроме потенциальных кодов в сетях используются и импульсные коды, когда данные представлены полным импульсом или же его частью – фронтом. Наиболее простым случаем такого подхода является биполярный импульсный код, в котором единица представлена импульсом одной полярности, а ноль – другой (рис … в). Каждый импульс длится половину такта. Такой код обладает отличными самосинхронизирующими свойствами, но постоянная составляющая может присутствовать, например, при передаче длинной последовательности единиц или нулей. Кроме того, спектр у него шире, чем у потенциальных кодов. Из-за слишком широкого спектра биполярный импульсный код используется редко.

Манчестерский код. В локальных сетях до недавнего времени самым распространенным методом кодирования был так называемый манчестерский код (рис. … г). Он применяется в технологиях Ethernet и Token Ring.

В манчестерском коде для кодирования единиц и нулей используется перепад потенциала, то есть фронт импульса. При манчестерском кодировании каждый такт делится на две части. Информация кодируется перепадами потенциала, происходящими в середине каждого такта. Единица кодируется перепадом от низкого уровня сигнала к высокому, а ноль – обратным перепадом. В начале каждого такта может происходить служебный перепад сигнала, если нужно представить несколько единиц или нулей подряд. Так как сигнал изменяется по крайней мере один раз за такт передачи одного бита данных, то манчестерский код обладает хорошими самосинхронизирующими свойствами. Полоса пропускания манчестерского кода уже, чем у биполярного импульсного. У него также нет постоянной составляющей. Манчестерский код имеет еще одно преимущество перед биполярным импульсным кодом. В последнем для передачи данных используются три уровня сигнала, а в манчестерском – два.

Потенциальный код 2В1Q. На рис. …., д показан потенциальный код с четырьмя уровнями сигнала для кодирования данных. Это код 2В1Q, название которого отражает его суть – каждые два бита (2В) передаются за один такт сигналом, имеющим четыре состояния (1Q). Паре бит 00 соответствует потенциал -2,5 В, паре бит 01 соответствует потенциал -0,833 В, паре И – потенциал +0,833 В, а паре 10 – потенциал +2,5 В. При этом способе кодирования требуются дополнительные меры по борьбе с длинными последовательностями одинаковых пар бит, так как при этом сигнал превращается в постоянную составляющую. При случайном чередовании бит спектр сигнала в два раза уже, чем у кода NRZ, так как при той же битовой скорости длительность такта увеличивается в два раза. Таким образом, с помощью кода 2В1Q можно по одной и той же линии передавать данные в два раза быстрее, чем с помощью кода AMI или NRZI. Однако для его реализации мощность передатчика должна быть выше, чтобы четыре уровня четко различались приемником на фоне помех.



Дата добавления: 2016-06-18; просмотров: 5379;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.