Принцип импульсного регулирования напряжения.


 

В основе работы импульсных преобразователей лежит следующий принцип. Предположим, что нагрузка подключена к источнику напряжения через ключевой элемент “к”, который периодически замыкается и размыкается.

Время замкнутого (tр) и разомкнутого (t0) состояний ключа можно автоматически изменять, воздействуя на него сигналами, поступающими из системы управления “СУ”. В результате к нагрузке будет приложено импульсное напряжение, форма которого соответствует диаграмме, представленной на рис 64б.

Очевидно, что среднее значение напряжения на нагрузке будет зависеть от соотношения времени замкнутого и разомкнутого состояний ключа К.

 

Согласно определению среднего значения напряжения можно записать:

(4-67)

где Ud - среднее значение напряжения на нагрузке;

t = tр + t0 - период переключения ключа или время цикла регулирования;

¦ = 1/t - частота переключения ключа.

Отношение (tр /t) = g (4-68) называют коэффициентом заполнения периода рабочим импульсом. Изменяя g, можно регулировать выходное напряжение на нагрузке.

Иногда рассматривается обратная величина q = (1/ g) = (t / tр), которая называется скважностью работы ключа.

При установлении соотношений между входным и выходным напряжениями, выявляя зависимость тока импульсного преобразователя от регулирующей переменной мы будем использовать коэффициент g.

Регулирование напряжения в рассматриваемой схеме за счет изменения коэффициента g можно рассматривать как широтно-импульсное регулирование напряжения на нагрузке.

Возможны три способа регулирования напряжения:

Широтно-импульсное регулирование (ШИР), когда время tр - переменное, а частота ¦- постоянная;

Частотно- импульсное регулирование (ЧИР), когда время tр - постоянное, а частота ¦- переменная;

Широтно-частотное регулирование, когда время tр и частота ¦ - переменные.

Чаще всего используется первый способ регулирования выходного напряжения. Его мы будем рассматривать.

Таким образом время рабочего импульса и время паузы связаны с g соотношениями:

tр = gt (4-69)

 

t0= (1- g)t (4-70)

 

Схема регулирования напряжения и диаграмма, изображенные на рис 64, могут быть реализованы лишь при активном сопротивлении нагрузки.

При использовании импульсного регулирования в системах электропривода нагрузка имеет активно- индуктивный характер и часто в составе нагрузки присутствует источник ЭДС.

В таком случае должен быть предусмотрен обратный вентиль. Он обеспечивает непрерывность тока в нагрузке при разрыве цепи импульсным элементом (ключом). На рис 65 изображена схема диаграммы напряжения и тока при активно- индуктивной нагрузке с противо-ЭДС.

На основании баланса энергии, поступающей в нагрузку из сети (от Uпит) и энергии, которая тратится в нагрузке, выявим зависимость, (связь) между средним значением тока, напряжением питания Uпит , ЭДС нагрузки Eн и коэффициентом g. При получении этой зависимости введем допущение, что среднее и действующее значение тока в нагрузке равны. Это может иметь место при идеальной сглаженности тока (если Lн = ¥).

Uн I tр = Eн I tр + I2 Rн tр + WL (1)

 

WL = Eн I t0 + I2 Rн t0

Uн I tр = Eн I t + I2 Rн t (2)

 

Uн tр = Eн t + I Rн t

Разделим левую и правую части на t, тогда:

Uн g = Eн + I Rн

 

g = (Eн + I Rн )/ Uн (4-71)

 

I = (Uн g - Eн )/ Rн (4-72)

 

Рис 65

 

Уравнение (1) представляет собой уравнение баланса поступающей в нагрузку из сети энергии за время одного рабочего импульса (tр) и энергии, тратящейся в нагрузке за время t. WL - энергия, накапливаемая в индуктивности за время tр. Этой энергии достаточно для поддержания тока в нагрузке, равного I за время паузы (t0).

Прибавив к правой части уравнения значение WL , получаем уравнение баланса энергии (2). Дальнейшие действия ясны без пояснений.

Уравнение (4-71) дает связь переменной g с переменными I ,Uн ,Eн .

Уравнение (4-72) показывает, что регулирование тока в цепи нагрузки можно осуществлять изменением g при неизменных Rн ,Uн ,Eн.




Дата добавления: 2016-06-18; просмотров: 3389;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.01 сек.