Классификация и перспективы развития систем теплоснабжения
Теплоснабжение промышленных предприятий и предприятий автомобильного транспорта.
Теплоснабжение промышленных предприятий — снабжение теплотой с помощью теплоносителя систем отопления, вентиляции, горячего водоснабжения промышленных зданий и технологических потребителей.
Система теплоснабжения — совокупность устройств, являющихся источниками теплоты, тепловых сетей, систем распределения и использования (абонентских вводов и потребителей теплоты).
Теплофикация — централизованное теплоснабжение на базе комбинированного производства электроэнергии и теплоты
Классификация и перспективы развития систем теплоснабжения
Интенсификация использования энергетических ресурсов в нашей стране сопровождается ростом теплопотребления промышленных предприятий различных отраслей народного хозяйства, составляющего в настоящее время в общем балансе страны около 56%.
Теплоснабжение в ряде случаев имеет суммарные затраты, превышающие 50% общих производственных затрат. Они часто определяются стоимостью не столько используемых энергоресурсов, сколько соответствующих систем теплоснабжения.
Системы теплоснабжения создают с учетом вида и параметров теплоносителя, максимального часового расхода теплоты, изменения потребления теплоты во времени (в течение суток, года), а также с учетом способа использования теплоносителя потребителями.
В системах теплоснабжения используются следующие источники теплоты: ТЭЦ, КЭС, районные котельные (централизованные системы); групповые (для группы предприятий, жилых кварталов) и индивидуальные котельные; АЭС, АТЭЦ, СЭУ, а также геотермальные источники пара и воды; вторичные•энергоресурсы (особенно на металлургических, стекольных, цементных и других предприятиях, где преобладают высокотемпературные процессы).
Теплофикация является особенностью отечественного теплоснабжения. Теплоснабжение от всех ТЭЦ в нашей стране обеспечивает около 40 % тепловой энергии, потребляемой в промышленности и коммунальном хозяйстве. На новых отечественных ТЭЦ устанавливаются теплофикационные турбоагрегаты единичной мощностью до 250 МВт, создаются предпосылки для развития тепловых сетей, в которых будет применяться в качестве теплоносителя перегретая вода с температурой 440 — 470 К.
АТЭЦ также способствуют дальнейшему развитию централизованного теплоснабжения (особенно в европейской части страны) с одновременным решением экологических проблем. Сооружение АТЭЦ экономически целесообразно при тепловой нагрузке, превышающей 6 тыс. ГДж/ч. При этих условиях могут использоваться серийные реакторы. Для меньших мощностей целесообразно применение атомных отопительных котельных.
В зависимости от рода теплоносителя системы теплоснабжения делят на водяные (преимущественно для теплоснабжения сезонных потребителей теплоты и горячей воды) и паровые (в основном для технологического теплоснабжения, когда необходим высокотемпературный теплоноситель). Определение вида, параметров и необходимого количества теплоносителя, подаваемого к потребителям теплоты, является, как правило, многовариантной задачей, решаемой в рамках оптимизации структуры и параметров общей схемы предприятия с учетом обобщенных технико-экономических показателей (обычно приведенных затрат), а также санитарных и противопожарных норм.
Практика теплоснабжения показала ряд преимуществ воды, как теплоносителя, по сравнению с паром: температура воды в системах теплоснабжения изменяется в широких пределах (300 — 470 К), более полно используется теплота на ТЭЦ, отсутствуют потери конденсата, меньше потери теплоты в сетях, теплоноситель обладает тепло- аккумулирующей способностью. Вместе с тем водяные системы теплоснабжения имеют следующие недостатки: требуется значительный расход электроэнергии на перекачку воды; имеется возможность утечки воды из системы при аварии; большая плотность теплоносителя и жесткая гидравлическая связь между участками системы обусловливают возможность появления механических повреждений системы в случае превышения допустимого давления; температура воды может оказаться ниже заданной по технологическим условиям.
Пар имеет постоянное давление 0,2 — 4 МПа и соответствующую (для насыщенного пара) температуру, а также большую (в несколько раз), по сравнению с водой, удельную энтальпию. При выборе в качестве теплоносителя пара или воды учитывается следующее. При транспортировании пара имеют место большие потери давления и теплоты, поэтому паровые системы целесообразны в радиусе 6—15 км, а водяные системы теплоснабжения имеют радиус действия 30—60 км. Эксплуатация протяженных паропроводов очень сложна (необходимость сбора и перекачки конденсата и др.). Кроме того, паровые системы имеют более высокую удельную стоимость сооружения паропроводов, паровых котлов, коммуникаций и эксплуатационных затрат по сравнению с водяными системами теплоснабжения.
Область применения в качестве теплоносителя горячего воздуха (или его смеси с продуктами сгорания топлива) ограничена некоторыми технологическими установками, например, сушильными, а также системами вентиляции и кондиционирования воздуха. Расстояние, на которое целесообразно транспортировать горячий воздух в качестве теплоносителя, не превышает 70—80 м.
Для упрощения и снижения затрат на трубопроводы в системах теплоснабжения целесообразно применять один вид теплоносителя.
Дата добавления: 2018-11-26; просмотров: 598;