Оптимальное смешение. Цели


Модели

Введем обозначения:

п — количество выпускаемых продуктов;

т — количество используемых производственных ресурсов (на­пример, производственные мощности, сырье, рабочая сила);

аij — объем затрат i-го ресурса на выпуск единицы j-й продук­ции;

сj — прибыль от выпуска и реализации единицы j-го продукта;

bi количество имеющегося i-го ресурса;

хj объем выпуска j-го продукта.

Формально задача оптимизации производственной программы может быть описана с помощью следующеймодели линейного про­граммирования:

(1)

(2)

(3)

Здесь (1) — целевая функция (максимум прибыли);

(2) — система специальных ограничений (constraint) на объем фактически имеющихся ресурсов;

(3) — система общих ограничений (на неотрицательность переменных);

хj переменная (variable).

Задача (1)—(3) называется задачей линейного программирования в стандартной форме на максимум.

Задача линейного программирования в стандартной форме на ми­нимум имеет вид

(4)

(5)

(6)

Вектор х = (x1, x2, ..., xn), компоненты хj которого удовлетво­ряют ограничениям (2) и (3) (или (5) и (6) в задаче на минимум), называется допустимым решением или допустимым планом задачи ЛП.

Совокупность всех допустимых планов называется множеством допустимых планов.

Допустимое решение задачи ЛП, на котором целевая функция (1) (или (3) в задаче на минимум) достигает максимального (минималь­ного) значения, называется оптимальным решением задачи ЛП.

С каждой задачей ЛП связывают другую задачу ЛП, которая записывается по определенным правилам и называется двойствен­ной задачей ЛП.

Двойственной к задаче ЛП (1)—(3) является задача

Соответственно, двойственной к задаче ЛП (7)—(9) является задача (1)—(3). Каждой переменной (специальному ограничению) исходной задачи соответствует специальное ограничение (пере­менная) двойственной задачи. Если исходная задача ЛП имеет решение, то имеет решение и двойственная к ней задача, при этом значения целевых функций для соответствующих оптимальных решений равны.

Компонента оптимального решения двойственной задачи (7)—(9) называется двойственной оценкой (Dual Value) ограничения исходной задачи ЛП.

Пусть j = max ( ), где хj компонента допустимого решения задачи (1)—(3).

Тогда при выполнении условий невырожденности оптималь­ного решения имеют место следующие соотношения:

Изменим значение правой части bi одного основного ограни­чения (RHS) исходной задачи ЛП.

Пусть минимальное значение правой части основного ограничения, при котором решение у* двойственной задачи не из­менится. Тогда величину называют нижней границей (Lower Bound) устойчивости по правой части ограничения.

Пусть максимальное значение правой части основного ограничения, при котором решение y* двойственной задачи не из­менится. Тогда величину называют верхней границей (Upper Bound) устойчивости по правой части ограничения.

Изменим значение одного коэффициента сj целевой функции исходной задачи ЛП.

Пусть минимальное значение коэффициента целевой функ­ции, при котором оптимальное решение x* исходной задачи не изменится. Тогда величину называют нижней границей устой­чивости по коэффициенту целевой функции.

Пусть максимальное значение коэффициента целевой функции, при котором оптимальное решение х* исходной задачи не изменится. Тогда величину называют верхней границей устойчивости по коэффициенту целевой функции.

Примеры. Пример 1. Сколько производить?

Предприятие располагает ресурсами сырья и рабочей силы, необходимыми для производства двух видов продукции. Затраты ресурсов на изготовление одной тонны каждого продукта, при­быль, получаемая предприятием от реализации тонны продукта, а также запасы ресурсов указаны в следующей таблице:

Вопросы:

1. Сколько продукта 1 следует производить для того, чтобы обеспечить максимальную прибыль?

2. Сколько продукта 2 следует производить для того, чтобы обеспечить максимальную прибыль?

3. Какова максимальная прибыль?

4. На сколько возрастет максимальная прибыль, если запасы сырья увеличатся на 1 т?

5. На сколько возрастет максимальная прибыль, если допус­тимый объем трудозатрат увеличится с 400 до 500 ч?

Решение. Пусть х1 объем выпуска продукта 1 в тоннах, х2объем выпуска продукта 2 в тоннах. Тогда задача может быть опи­сана в виде следующей модели линейного программирования:

Используя пакет РОМ for WINDOWS (далее - POMWIN), ис­ходную информацию для решения этой задачи можно представить в виде следующей таблицы:

Решая эту задачу, получаем следующий результат:

В нижней строке указан объем выпуска каждого продукта, удовлетворяющий ограничениям на ресурсы и обеспечивающий максимальную прибыль. Величина 988,24 — максимальное значе­ние целевой функции.

Чтобы обеспечить максимальную прибыль, следует произво­дить 16,47 т продукта 1 и 14,12 т продукта 2.

Максимальная прибыль равна 988,24 тыс. руб.

В правом столбце таблицы указаны двойственные оценки для каждого ограничения. Так, величина 3,82 показывает, что при увеличении запаса сырья на 1 т (до 121) максимальное значение целевой функции для нового оптимального плана увеличится по сравнению с 988,24 на 3,82 тыс. руб. Аналогично можно интер­претировать значение двойственной оценки 1,32 для второго ре­сурса.

Следующая таблица содержит дополнительную информацию, предоставляемую пакетом POMWIN:

Два правых столбца таблицы — границы устойчивости по зна­чениям коэффициентов целевой функции (верхняя часть табли­цы) и правых частей ограничений (нижняя часть).

Так, в случае если прибыль, получаемая от реализации 1 т про­дукта 1, изменится, но останется в пределах от 21 до 40,83, коли­чество продукта 1 в оптимальном плане не изменится.

В случае если запас сырья изменится, но останется в пределах от 85,71 до 166,66, двойственная оценка этого ресурса не изменится.

Соответственно, если допустимый объем трудозатрат изменит­ся в пределах от 288 до 560 ч, двойственная оценка этого ресурса не изменится.

Если допустимый объем трудозатрат увеличится с 400 до 500 ч, то максимальная прибыль увеличится на 132 тыс. руб.

Пример 2. Производить или покупать?

Фирма производит два типа химикатов. На предстоящий ме­сяц она заключила контракт на поставку следующего количества этих химикатов:

Производство фирмы ограничено ресурсом времени работы двух химических реакторов. Каждый тип химикатов должен быть обработан сначала в реакторе 1, а затем в реакторе 2. Ниже в таб­лице приведен фонд рабочего времени, имеющийся у каждого реактора в следующем месяце, а также время на обработку одной тонны каждого химиката в каждом реакторе:

Из-за ограниченных возможностей, связанных с существу­ющим фондом времени на обработку химикатов в реакторах, фир­ма не имеет достаточных мощностей, чтобы выполнить обязатель­ства по контракту. Выход заключается в следующем: фирма долж­на купить какое-то количество этих химикатов у других производителей, чтобы использовать эти закупки для выполнения контракта. Ниже приводится таблица затрат на производство хи­микатов самой фирмой и на закупку их со стороны:

Цель фирмы состоит в том, чтобы обеспечить выполнение кон­тракта с минимальными издержками. Это позволит ей максими­зировать прибыль, так как цены на химикаты уже оговорены контрактом. Другими словами, фирма должна принять решение: сколько химикатов каждого типа производить у себя, а сколько — закупать со стороны для того, чтобы выполнить контракт с ми­нимальными издержками.

Вопросы:

1. Сколько химикатов типа 1 следует производить фирме?

2. Сколько химикатов типа 2 следует производить фирме?

3. Сколько химикатов типа 1 следует закупать со стороны?

4. Сколько химикатов типа 2 следует закупать со стороны?

5. Каковы минимальные издержки на выполнение контракта?

6. Следует ли изменить объем закупок химикатов типа 2 со стороны, если их цена возрастет до 75 тыс. руб. за тонну?

7. На сколько возрастут минимальные издержки, если фонд времени работы реактора 2 сократится с 400 до 300 ч?

Решение. Введем обозначения:

x1— количество продукта 1, производимого компанией;

z1 — количество продукта 1, закупаемого компанией;

x2 количество продукта 2, производимого компанией;

z2 — количество продукта 2, закупаемого компанией.

Модель линейного программирования приведена в следующей таблице:

Условия неотрицательности переменных: ; ; ; .

Таблица исходной информации для расчетов в POMWIN имеет следующий вид:

Результаты расчетов:

Таблица двойственных оценок и границ устойчивости:

Из таблицы двойственных оценок и границ устойчивости вид­но, что в пределах изменения закупочной цены на химикат типа 2 от 61 до 76 (ее фактическое значение 66) оптимальный план не изменится.

Из таблицы также видно, что изменение ресурса времени ра­боты реактора 2 в пределах от 225 до 765 не приведет к измене­нию двойственной оценки соответствующего ограничения.

Ответы: 1. 55,55 т. 2. 38,89 т. 3. 44,44 т. 4. 81,11 т.

5. 11 475,56 тыс. руб. 6. Нет, не следует.

7. Ha 111 тыс. руб.

 

Оптимальное смешение. Цели

В данной главе показаны возможности использования модели линейного программирования для решения задач оптимального сме­шения. Наряду с рассмотренной в главе 1 задачей планирования производства это одна из наиболее известных областей приложе­ния модели линейного программирования. Модели оптимально­го смешения имеют много общего с моделями оптимального пла­нирования производства. В то же время существуют и некоторые особенности.

После того как вы выполните задания, предлагаемые в этой главе, вы будете уметь формулировать и использовать для эконо­мического анализа следующие понятия:

• смесь;

• ингредиент смеси;

• компонент смеси;

• рецепт смешения.

Модели

Важный класс прикладных оптимизационных задач образуют задачи о смесях. Такие задачи возникают при выборе наилучшего способа смешения исходных ингредиентов для получения смеси с заданными свойствами. Смесь должна иметь требуемые свой­ства, которые определяются количеством компонентов, входящих в состав исходных ингредиентов. Как правило, известны стоимост­ные характеристики ингредиентов и искомую смесь требуется получить с наименьшими затратами. Для многопродуктовых за­дач, в которых требуется получить несколько смесей, характерным является критерий максимизации прибыли.

Задачи оптимального смешения встречаются во многих отрас­лях промышленности (металлургия, парфюмерия, пищевая про­мышленность, фармакология, сельское хозяйство). Примерами задач о смесях могут служить определение кормового рациона скота на животноводческих фермах, составление рецептуры ших­ты на металлургическом производстве и т.п.

Рассмотрим сначала однопродуктовые модели оптималь­ного смешения.

Введем обозначения:

п — количество исходных ингредиентов;

т — количество компонентов в смеси;

хj количество j-го ингредиента, входящего в смесь;

аij —количество i-го компонента в j-м ингредиенте;

сj —стоимость единицы j-го ингредиента;

bi — количество i-го компонента всмеси.

Модель А:

Здесь (1) — целевая функция (минимум затрат на получение смеси);

(2)— группа ограничений, определяющих содержание ком­понентов в смеси;

(3) — ограничения на неотрицательность переменных.

В задаче могут присутствовать также ограничения на общий объем смеси и ограничения на количество используемых ингре­диентов. Эти группы ограничений, а также ограничения (2) ха­рактерны для задачи планирования производства, рассмотренной в главе 1.

Введем обозначения:

п — количество исходных ингредиентов;

т — количество компонентов в смеси;

w — количество условий, отражающих содержание j-го ингре­диента в смеси;

хj — количество j-го ингредиента, входящего в смесь;

аij — доля j-го компонента в j-м ингредиенте;

bi минимально допустимая доля i-го компонента в смеси;

сj — стоимость единицы j-го ингредиента;

drj — коэффициент, отражающий r-е условие на содержание j-го ингредиента в смеси.

Модель В:

Здесь (4) — целевая функция (минимум затрат на получение смеси);

(5) — группа ограничений, определяющих содержание компонентов в смеси;

(6) — группа ограничении на содержание ингредиентов в смеси;

(7) — ограничение на количество смеси;

(8) — ограничения на неотрицательность переменных.

Ограничения (5) и (6) отличают задачу смешения от задачи оптимального планирования производства. Заметим, что значения правых частей этих ограничений равны нулю. Вектор х* с компо­нентами, являющийся решением этой оптимизационной зада­чи, называют рецептом приготовления смеси или рецептом сме­шения.

В многопродуктовых задачах ингредиенты используют­ся для приготовления не одной, а нескольких смесей. При этом в качестве переменной xkj, такой задачи рассматривается количество ингредиента j, используемое для приготовления смеси k. Крите­рий задачи — максимизация прибыли.

Введем обозначения:

п — количество исходных ингредиентов;

т — количество компонентов в смеси;

w — количество условий, отражающих содержание j-го ингре­диента в смеси;

s — количество смесей;

хkj — количество j-го ингредиента, входящего в k-ю смесь;

аij — доля i-го компонента в j-м ингредиенте;

bik минимально допустимая доля i-го компонента в k-й смеси;

сj — стоимость единицы j-го ингредиента;

рk стоимость единицы k-й смеси;

drkj коэффициент, отражающий r-е условие на содержание j-го ингредиента в k-й смеси;

иj количество имеющегося j-го ингредиента.

МодельС:

Здесь (9) — целевая функция (максимум прибыли);

(10) — группа ограничений, определяющих содержание компонентов в смеси;

(11) — группа ограничений на содержание ингредиентов в смеси;

(12) — ограничения на количество ингредиентов;

(13)— ограничения на неотрицательность переменных.

Примеры. Пример 1. Планирование производства на сочинском винзаводе.

Сочинский винзавод производит две марки сухого вина: «Чер­ный лекарь» и «Букет роз». Оптовые цены, по которым реализу­ется готовая продукция, соответственно 68 и 57 руб. за литр. Ин­гредиентами для приготовления этих вин являются белое, розо­вое и красное сухие вина, закупаемые в Краснодаре. Эти вина стоят соответственно 70, 50 и 40 руб. за литр. В среднем на со­чи иски и винзавод поставляется ежедневно 2000 л белого, 2500 л розового и 1200л красного вина.

В вине «Черный лекарь» должно содержаться не менее 60% белого вина и не более 20% красного. Вино «Букет роз» должно содержать не более 60% красного и не менее 15% белого.

Определите рецепты смешения ингредиентов для производства вин «Черный лекарь» и «Букет роз», обеспечивающие заводу мак­симальную прибыль.

Вопросы:

1. Какую максимальную прибыль можно получить за один день?

2. Сколько литров вина «Черный лекарь» следует производить ежедневно?

3. Сколько процентов белого вина должен содержать «Черный лекарь»?

4. Сколько литров вина «Букет роз» следует производить еже­дневно?

5. Сколько процентов розового вина должен содержать «Букет роз»?

6. На сколько возрастет прибыль винзавода, если поставки красного вина удастся увеличить до 1300 л в день?

7. На сколько уменьшится прибыль винзавода, если поставки белого вина сократятся до 1800 л?

Решение. Пусть xkj — количество j-го ингредиента (j = 1, 2, 3), входящего в k-ю смесь (k = 1, 2). Например, x23 — количество красного вина, ежедневно используемого для приготовления вина «Букет роз». Тогда модель оптимального смешения имеет следу­ющий вид.

Критерий максимизации прибыли:

(68 - 70)х11 + (68 - 50)x12 + (68 - 40)x13 + (57 - 70)x21 + + (57 - 50)x22 + (57 - 40)x22 ® max.

Ограничения на поставки ингредиентов:

Ограничения, отражающие условия на содержание ингредиен­тов в смеси:

Последняя группа ограничений может быть преобразована сле­дующим образом:

Кроме того, следует учесть ограничения на неотрицательность переменных.

Используя пакет POMWIN, исходную информацию для реше­ния этой задачи можно представить в виде следующей таблицы:

Решая эту задачу, получаем следующий результат:

В следующей таблице содержится дополнительная информация о границах устойчивости решения по правым частям ограничений:

Таким образом, максимальная ежедневная прибыль винзавода достигает 39 888,9 руб. При этом производится 1526,7 + 1017,8 = 2544,5 л вина «Черный лекарь» и 473,3 + 1482,2 + 1200 = 3155,5 л вина «Букет роз». Поставляемые ингредиенты исполь­зуются полностью.

Содержание белого вина в вине «Черный лекарь» составляет 1526,7/2544,5 = 0,6 (60%). Содержание розового вина в вине «Бу­кет роз» составляет 1482,2/3155,5 = 0,47 (47%).

Если поставки красного вина удастся увеличить до 1300 л в день, то с учетом значения двойственной оценки 13,3 ограниче­ния на объем поставок красного вина определяем, что прибыль увеличится на 13,3 • 100 = 1330 руб.

Заметим, что объем поставок остается в границах устойчивос­ти решения. Если поставки белого вина сократятся до 1800 л в день, то с учетом значения двойственной оценки 7,8 ограничения на объем поставок белого вина определяем, что прибыль умень­шится на 7,8 • 200 = 1560 руб. Заметим, что объем поставок бело­го вина остается в границах устойчивости решения.

Ответы: 1. 39 889,9 руб. 2. 2544,5 л. 3. 60%.

4. 3155,5 л. 5. 47%. 6. На 1330 руб.

7. На 1560 руб.

Вопросы. Вопрос 1. Требуется определить объемы производства четырех видов лакокрасочных изделий. Рецепт производства каждого из них предполагает использование трех ингредиентов: олифы, кра­сителя и белил. Объёмы поставок ингредиентов ограничены. Спрос на готовую продукцию не ограничен. Задача решается с целью максимизировать прибыль от реализации продукции.

Какое минимальное число переменных и ограничений содер­жит задача оптимального смешения?

Варианты ответов:

1) четыре переменные и три ограничения;

2) три переменные и четыре ограничения;

3) три переменные и двенадцать ограничений;

4) двенадцать переменных и три ограничения;

5) двенадцать переменных и четыре ограничения.

Вопрос 2. Для приготовления вина «Букет Молдавии» исполь­зуется смесь из белого и красного сухих вин. Белого вина в гото­вой смеси должно быть не более 30%. Пусть х — количество бе­лого вина, которое следует использовать для приготовления сме­си; у — количество красного вина. Тогда условие на содержание ингредиентов в готовой смеси может быть формализовано следу­ющим образом:

Вопрос 3. Для описания результатов, полученных при решении задачи оптимального смешения, может быть использована следу­ющая фраза:

1) использованные для получения смеси компоненты не содер­жат необходимых ингредиентов;

2) рецепт смешения предполагает использование четырех ин­гредиентов;

3) для получения смеси надо использовать три компонента;

4) рецепт смешения предполагает использование трех компо­нентов;

5) рецепт смешения не предполагает использования этого ком­понента для приготовления смеси.

Вопрос 4. В задаче смешения исходными ингредиентами явля­ется бензин марок А, В и С, октановые числа которых 76, 93 и 98 соответственно. Октановое число смеси должно быть не менее 93.

Какое из неравенств правильно формализует это условие, если за х1, х2 и х3 принято предназначенное для смешения количество бензина марки А, В и С соответственно?

Варианты ответов:

1) 76 х1 + 93 х2 + 98 х3 ³ 93;

2) 76 х1 + 93 х2 + 98 х3 £ 93;

3) 5 х3 – 17 х1 ³ 0;

4) 17 х1 – 5 х3 £ 0;

5) 76 х1 + 98 х3 £ 93.

Вопрос 5. Ингредиенты j (j = 1,..., п) используются для при­готовления смесей k (k = 1, ..., т). Пусть хjk — количество j-го ингредиента, входящего в k-ю смесь; сk — цена, по которой про­изводитель продает готовую k-ю смесь; рj цена, по которой за­купается j-й ингредиент. Тогда критерии максимизации прибы­ли в задаче оптимального смешения будет иметь следующий вид:

 



Дата добавления: 2022-07-20; просмотров: 130;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.051 сек.