Бетонирование с применением противоморозных химических добавок.


Основная причина прекращения твердения бетонных смесей при воздействии низких температур – замерзания в них воды. Известно, что содержание в воде солей резко снижает температуру ее замерзания. Если в процессе приготовления в бетонную смесь ввести определенное количество растворенных солей, то процесс твердения будет протекать и при температуре ниже 00С.

В качестве противоморозных добавок применяют:

· нитрит натрия (НН) NaNO2 ;

· хлорид кальция (ХК) CaCl2 (ГОСТ 450-77) + хлорид натрия (ХН) NaCl ;

· хлорид кальция (ХК) + нитрит натрия (НН);

· нитрат кальция (НК) Ca(NO3)2 (ГОСТ 4142-77) + мочевина (М) CO(NH2)2 );

· комплексное соединение нитрата кальция с мочевиной (НКМ) (ТУ 6-03-266-70);

· нитрит-нитрат кальция (ННК) (ТУ 603-7-04-74) + мочевина (М);

· нитрит-нитрат кальция (ННК) + хлорид кальция (ХК);

· нитрит-нитрат - хлорид кальция (ННХК) + мочевина (М);

· поташ (П) K2CO3 (ГОСТ 10690-73).

Выбор противоморозных добавок и их оптимальное количество зависят от вида бетонируемой конструкции, степени ее армирования, наличия агрессивных сред и блуждающих токов, температуры окружающей среды и др. и осуществляется в соответствии с ГОСТ 24211-2003 «Добавки для бетонов и растворов».

Область применения добавок представлена в таб.10.1

Противоморозные химические добавки запрещается использовать при бетонировании предварительно напряженных конструкций, армированных термически упрочненной сталью; при возведении железобетонных конструкций для электрифицированных железных дорог и промышленных предприятий, где возможно возникновение блуждающих токов способствующих разрушению бетона.

Внесение химических добавок приводит к некоторому замедлению набора прочности бетоном по сравнению со скоростью твердения бетона в нормальных условиях. Так при внесении поташа прочность бетона в возрасте 28 суток при температуре окружающего воздуха -25C составляет 50%, а в возрасте 90 суток­-60%. При температуре -50С набор прочности протекает более интенсивно и к 28- суточному возрасту он может составлять 75%.

В зависимости от температуры наружного воздуха возможны различные сочетания добавок. Бетон с противоморозными добавками применяют в тех случаях, когда достигается набор критической прочности до их замерзания. Скорости набора прочности бетонами с противоморозными добавками в зависимости от температуры твердения даны в таб. 10.12 При выборе добавок учитывают их стоимость и влияние на физико-механические и технологические свойства бетонов и бетонных смесей. Так при внесении поташа сокращаются сроки схватывания цемента, в результате чего ухудшается удобоукладываемость смеси. Наиболее дешевые и доступные добавки – хлориды кальция и натрия. Добавки вводят в виде водяных растворов в процессе приготовления бетонных смесей в количестве 3---18% от массы цемента. Применение добавок целесообразно в сочетанли с дополнительным подогревом. Растворы, содержащие мочевину, не следует подогревать выше 40 0С. Растворы солей рабочей концентрации не должны иметь осадков нерастворившихся солей.

Область применения добавок.

Таблица 10.1

Тип конструкций и условия их эксплуатации Добавки
НН ХК+ХН ХК+НН НКМ, НК+М, ННК+ХК ННК+М, ННХК, ННХК М П
Железобетонные конструкции с арматурой диаметром, мм:            
более 5 + - + + + +
5 и менее + - + + - +
Конструкции монолитные; стыки, имеющие выпуски арматуры или закладные части:            
без специальной защиты стали + - - + - +
с металлическими покрытиями - - - + - -
с комбинированными покрытиями + - + + + +
Железобетонные конструкции, предназначенные для эксплуатации:            
В воде + + + + + +
В неагрессивной газовой среде при относительной влажности воздуха до 60% + + - + + +
В агрессивной газовой среде + - - + - +

Примечание: Знак (-) означает запрещение применения.

Скорость набора прочности бетона на портландцементах с противоморозными добавками % от R28

Таблица 10.2

Температура твердения, 0С Твердение бетона, сут.
Нитрит натрия
-5
-10
-15
Хлорид натрия + хлорид кальция
-5
-10
-15
-20
Нитрит кальция с мочевиной
-5
-10
-15
-20
Нитрит натрия с хлоридом кальция и мочевиной
-5
-10
-15
Температура твердения, 0С Твердение бетона, сут.
-20
-25
Мочевина
-5
-10
-15
-20
-25

Некоторые добавки, например хлористые соли, ухудшают качество поверхности возводимых конструкций вследствие образования высолов. Поэтому их применяют при возведении сооружений небольших объемов, к качеству поверхностей которых не предъявляют высоких требований (например, фундаменты, балки). Процесс укладки и уплотнения смесей не отличается от обычных методов бетонирования.

Метод термоса

Заранее нагретую бетонную смесь уложенный в зимних условиях, выдерживают преимущественно методом термоса, основанным на применении утепленной опалубки с устройством сверху защитного слоя. Бетонную смесь температурой 20---80 0С укладывают в утепленную опалубку, а открытые поверхности защищают от охлаждения. Обогревать ее при этом не требуется, так как количество теплоты, внесенных в смесь при приготовлении, а также выделяющиеся в результате физико-химических процессов взаимодействия цемента с водой (экзотермии), достаточно для ее твердения и набора критической прочности. При проектировании термосного выдерживания бетона подбирают тип опалубки и степень ее утепления. Сущность метода термоса состоит в том, чтобы бетон, остывая до 0 0С, смог за это время набрать критическую прочность. Учитывая это, назначают толщину и вид утеплителя опалубки. Утепление опалубки выполняют без зазоров и щелей, особенно в местах стыкования теплоизоляции. Для уменьшения продуваемости опалубки и предохранения ее от увлажнения по обшивке прокладывают слой толи.

В качестве защитного слоя применяют толь, картон, фанеру, соломит, по которым могут быть уложены опилки, шлак, шлаковойлок, стекловата. Опалубка может быть двойной, тогда промежутки между ее щитами засыпают опилками, шлаком или заполняют минеральной ватой, пенопластом.

Опалубку из железобетонных плит утепляют с наружной стороны, навешивая на них маты. Поверхность, соприкасающуюся с бетоном, перед началом бетонирования обязательно прогревают. По окончании бетонирования немедленно утепляют верхние открытые поверхности, при этом теплотехнические свойства этого утеплителя (покрытия) должны быть не ниже, чем у основных элементов опалубки.

Опалубку и утеплитель демонтируют по достижении бетоном критической прочности. Поверхности распалубленной конструкции ограждают от резкого перепада температур во избежание образования трещин.

Метод термоса применяют при бетонировании массивных конструкций. Степень массивности оценивают модулем поверхности Мn=F/V, где F- площадь суммарной охлаждаемой поверхности конструкции, м2 ; V- объем конструкции, м3 .

Конструкция считается массивной при Мn < 6, средней массивности при Мn=6…9 и ажурной при Мn>9.

При определении Мn не учитывается площадь поверхностей конструкций, соприкасающихся с талым грунтом, хорошо прогретой бетонной поверхностью или каменной кладкой. Для длинномерных изделий и конструкций (например, колон, ригелей, балок) Мn определяют отношением периметра их поперечного сечения к его площади.

Метод термоса применяют для конструкций с Мn < 6, а при предварительном разогреве бетона до 60…800C – с Мn=8…10.

5.Электропрогрев бетонной смеси в конструкциях.

Способ электропрогрева бетона в конструкциях основан на использовании выделяемой теплоты при прохождении через него электрического тока. Для подведения напряжения используют электроды различной конструкции и формы. В зависимости от расположения электродов прогрев подразделяют на сквозной и периферийный. При сквозном прогреве электроды располагают по всему сечению, а при периферийном – по наружной поверхности конструкций. Во избежание отложения солей на электродах постоянный ток использовать запрещается.

Для сквозного прогрева колонн, балок, стен и других конструкций, возводимых в деревянной опалубке, применяют стержневые электроды, которые изготовляют из отрезков арматурной стали диаметром до 6мм с заостренным концом. Для установки электродов высверливают отверстия в одном из щитов опалубки таким образом, чтобы электроды не соприкасались с арматурой каркаса. Затем вставляют электрод и ударом молотка фиксируют его в противоположном щите. Расстояние между электродами по горизонтали и вертикали принимают по расчету. Затем осуществляют их коммутацию.

Для периферийного прогрева при слабом армировании и когда исключен контакт арматурой применяют плавающие электроды в виде замкнутой петли. При прогреве плоских конструкций (например, подготовка под полы, дорожные покрытия, ребристые плиты) применяют пластинчатые электроды.

В качестве плавающих электродов применяют полосовую сталь толщиной 3…5, шириной 30…50 мм. Расстояние между ними определяют расчетом. Электроды должны контактировать с бетоном и могут быть несколько утоплены в него. Между ними и бетоном не должно быть зазора. Для этого их нагружают токонепроводящими материалами (досками, кирпичами), сами электроды должны быть без искривлений и перегибов.

Нашивные электроды, так же как и плавающие, относятся к элементам периферийного прогрева. Их производят из круглой арматурной стали или металлических пластин толщиной 2…3 мм. Электроды нашивают на щиты опалубки, а концы загибают под углом 90 0 и выводят наружу. После установки опалубки производят коммутацию электродов. Необходимо помнить, что электроды не должны иметь контакта с арматурой конструкции во избегания короткого замыкания. Поэтому при установки арматурных каркасов используют пластмассовые прокладки и фиксаторы, которые обеспечивают заданную толщину защитного слоя и предотвращают контакт с электродами.

При изготовлении длинномерных конструкций (колонн, ригелей, балок, свай) используют струнные электроды. Выполняют их из гладкой арматурной стали диаметром 4…6 мм. Располагают в центральной части сечения конструкции. Концы электродов отгибают под углом 900 и выводят через отверстия в опалубке для подключения коммутирующих проводов.

При периферийном прогреве массивных конструкций, а также элементов зданий малой массивности (стен, резервуаров, ленточных фундаментов) в качестве электродов используют металлические щиты опалубки и арматуру конструкции. В первом случае используют однофазный ток: первую фазу подключают к щитам опалубки, а нулевую- к арматурному каркасу. Во втором случае арматурный каркас не подключают к сети, а каждый элемент опалубки присоединяют к одной из трех фаз. Изоляторами между щитами опалубки служат деревянные брусья.

Однородность температуры поля зависит от схемы расположения электродов и расстояния между ними. Чем ближе друг к другу электроды и чем сильнее армирование конструкции, тем больше будут температурные перепады в твердеющем бетоне, в результате чего режим твердения будет неоднородным и качество бетона ухудшится. Поэтому в каждом конкретном случае рассчитывают схему расположения электродов с учетом степени армирования конструкции. При напряжении на электродах 50…60В расстояние между электродами и арматурой должно быть не менее 25мм, а при 70…85В – не менее 40мм.

Стержневые электроды применяют, как правило, в виде плоских групп, которые подключают к одной фазе. При большой длине конструкций вместо одного электрода устанавливают два или три по длине. Допустимую длину полосового, стержневого или струнного электродов принимают путем расчета минимальной потери напряжения по его длине.

Способы установки электродов и области их применения.

Таблица 10.3.

Тип элект-родов Материал Способ установки в конструкции Область применения Примеча-ние
Стержне-вые Круглая сталь – стержни диаметром 6…10 мм Закладывают через отверстие в опалубочных щитах или с открытой стороны бетона Электропрог-рев конструк-ций толщи-ной не менее 15 см После элек-тропрогрева остаются в теле бетона
Струнные Круглая сталь – стержни диаметром 8…12 мм Устанавливают вдоль оси конструкции Электропрог-рев слабоар-мированных конструкций После элек-тропрогрева остаются в теле бетона
Нашивные Круглая сталь – стержни диаметром 6…10 мм Укрепляют на вертикальных щитах опалубки с внутренней стороны через 10…20 см Не ограничено Имеют мно-горазовое использова-ние
Полосовые Листовая сталь – полосы, полосовая сталь, полосы толщиной 3 мм Укрепляют на горизонтальных щитах опалубки, которые укладывают на бетон Электропро-грев плит Имеют мно-горазовое использова-ние
Плаваю-щие Круглая сталь – стержни диаметром более 12 мм Устанавливают в свежеотформованный бетон на 2…3 см Не ограничено Имеют мно-горазовое использова-ние

 

Для получения высокого качества железобетона строго соблюдают температурный режим прогрева, который разделяют на три стадии:

1. Подъем температуры бетона. Скорость подъема зависит от модуля поверхности:

Мn………………………… 2…6 6…9 9…15

Скорость подъема С0/ч 8 10 15

2. Изотермический прогрев. На этой стадии в бетоне поддерживают заданную температуру. Продолжительность стадии зависит от вида конструкции (прогревают до получения необходимой прочности бетона). Чаще всего на стадии изотермического прогрева достигают критическую прочность бетона.

3. Остывание конструкций. При остывании до 0 0С бетон продолжает набирать прочность, что особенно важно при бетонировании массивных конструкций.

Для конструкций с Мn = 6…9 применяют режим, при котором к моменту остывания бетон должен набрать прочность не менее критической. Для конструкций с Мn = 9…15 режим такой же, но в конце изотермического прогрева бетон должен набрать не менее 50% прочности. Этим обстоятельством определяется время изотермического прогрева. При изготовлении предварительно напряженных конструкций к моменту окончания изотермического прогрева прочность бетона должна быть не менее 80%.

Нарушение технологического режима электропрогрева может привести к пережогу бетона в результате перегрева бетонной смеси выше 100 0С, недостаточному набору прочности, образованию трещин в результате неоднородности температурного поля.

Температура разогрева бетона зависит от конструкции и вида цемента

Максимально допускаемые температуры бетона, 0С, при электропрогреве.

Таблица 3.3.2

Цемент Mn
6…9 10…15 16…20
Шлакопортландцемент и пуццолановый портландцемент
Портландцемент и быстротвердеющий Портландцемент (БТЦ)

Максимальную температуру прогрева более массивных конструкций назначают из условия получения равномерного температурного поля и исключения в них высоких термонапряжений.

Необходимую температуру прогрева бетона получают изменением напряжения, периодическим отключением и включением всего прогрева или части электродов. При электропрогреве бетонных конструкций с помощью контрольно-измерительных приборов постоянно контролируют напряжение, силу тока и температуру бетона. В первые 3ч прогрева температуру измеряют каждый час, а затем- через 2…3 часа.

Скорость остывания бетона также регулируют.

Допускаемая скорость остывания бетонных конструкций.

Таблица 10.4

Конструкции Mn Скорость остывания, 0С/ч
Бетонные 15…10
Слабоармированные и железобетонные 8…6
Железобетонные 5…3 2…3
Средне- и сильноармированные 8…15 Не более 15

Если скорость остывания превысит допустимую, в бетонной смеси возникнут температурные напряжения, способные разрушить структуру бетона или образовать в нем трещины. Регулируют скорость остывания путем правильного подбора теплоизоляции опалубки.

Перед началом бетонирования проверяют правильность установки электродов и их коммутацию, качество утепления опалубки, определяют надежность контактов электродов с токопроводящими проводами.

При электропрогреве необходимо тщательно выполнять требования электробезопасности и охраны труда.



Дата добавления: 2018-05-10; просмотров: 1111;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.027 сек.