Частота, при которой ЛАЧХ пересекает ось частот носит название частоты среза.

Частота, при которой ЛАЧХ пересекает ось частот носит название частоты среза.





ЛФЧХ, получаемая из второго слагаемого, отличается от ФЧХ только масштабом по оси . Величина ( ) откладывается по оси ординат в градусах или радианах. Для элементарных звеньев она не выходит за пределы: - + .

ЧХ являются исчерпывающими характеристиками системы. Зная ЧХ системы можно восстановить ее передаточную функцию и определить параметры.

При исследовании и проектировании САУ часто используют АФЧХ, ЛАЧХ и ЛФЧХ разомкнутых систем. Это объясняется тем, что разомкнутые САУ более просто исследовать экспериментально, чем замкнутые. В то же время по ним можно получить исчерпывающую информацию о поведении данной САУ в замкнутом состоянии.

Любую многоконтурную САУ можно привести к одноконтурной. Разомкнутая одноконтурная САУ состоит из цепочки последовательно соединенных динамических звеньев. Зная передаточную функцию разомкнутой САУ можно построить ее ЧХ. И наоборот, зная ЧХ разомкнутой САУ, снятую, например, опытным путем, можно найти ее передаточную функцию.

Передаточная функция разомкнутой одноконтурной системы равна произведению передаточных функций отдельных звеньев:

 

.

 

Заменив в этом выражении p на j w получим ее АФЧХ:

 

.

 

АЧХ: ,

 

значит ЛАЧХ равна сумме ЛАЧХ звеньев: .

ЛФЧХ: .

Таким образом ЛАЧХ и ЛФЧХ разомкнутой САУ строят путем графического сложения ЛАЧХ и ЛФЧХ звеньев. При этом ограничиваются построением асимптотической ЛАЧХ.

Для построения ЛАЧХ и ЛФЧХ рекомендуется следующий порядок:

1) раскладывают сложную передаточную функцию на множители, являющиеся передаточными функциями типовых динамических звеньев (порядок полиномов числителя и знаменателя не выше второго);

2) вычисляют сопрягающие частоты отдельных звеньев и строят асимптотические ЛАЧХ и ЛФЧХ каждого элементарного звена;

3) путем графического суммирования ЛАЧХ и ЛФЧХ звеньев строят результирующие ЧХ.

Рассмотрим конкретный пример:

 

W(p) = = W1W2W3W4.

 

Раскладываем данную передаточную функцию на передаточные функции элементарных звеньев:

1) безынерционное звено:

W1 = K1 = 100 => L(w) = 20lg100 = 40;

 

2) форсирующее звено:

W2 = p + 1;

 

его параметры:

K2 = 1, T2 = 1, 2 = 1/T2 = 1;

 

3) интегрирующее звено:

W3 = 1/p;

 

его ЛАЧХ проходит через точку L = 0 при частоте = 1;

4) апериодическое звено:

 

W4 = 1/(0.1p + 1);

его параметры: K4 = 1, T4 = 0.1, 4 = 1/T4 = 10.

Порядок построения ЛАЧХ и ЛФЧХ показан на рис.57.

Иногда требуется решить обратную задачу, то есть определить передаточную функцию по известной ЛАЧХ. Процедура определения передаточной функции состоит из следующих этапов:

1) известная ЛАЧХ представляется в асимптотическом виде, для этого непрерывная кривая заменяется отрезками прямых либо горизонтальных, либо с наклоном, кратным ±20 дб/дек;

2) асимптотическая ЛАЧХ раскладывается на ЛАЧХ элементарных звеньев;

3) для каждой из полученных ЛАЧХ определяются k и 1 = 1/T и записывается передаточная функция типового звена;

4) передаточная функция САУ определяем путем перемножения передаточных функций типовых звеньев.


Описанный порядок иллюстрируется на рис.58.

Здесь ЛАЧХ может быть представлена суммой ЛАЧХ четырех типовых звеньев: пропорционального W1 = 100, апериодического W2 = 1/(p + 1), форсирующего W3 = 0.1p + 1 и апериодического W4 = 1/(0.01p + 1).

Таким образом, передаточная функция разомкнутой САУ имеет вид

 

.

 

В более сложных случаях наклоны ЛАЧХ на некоторых участках превышают ± 20дб/дек. Тогда помимо параметров K и T приходится определять еще и коэффициенты демпфирования r.

Зная передаточную функцию разомкнутой САУ можно построить ее уравнение динамики

 

=> => => .

Таким образом можно определить уравнение динамики реальных звеньев и всей реальной САУ, если оно теоретически это сделать затруднительно. Для снятия частотных характеристик реальной разомкнутой САУ на ее вход подают гармонический сигнал с изменяемой частотой и определяют изменение амплитуды и фазы выходного сигнала в зависимости от частоты. По полученным характеристикам определяют уравнение динамики, после чего САУ можно исследовать теоретически.

 

 






Дата добавления: 2017-11-21; просмотров: 753; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2018 год. Материал предоставляется для ознакомительных и учебных целей. | Обратная связь
Генерация страницы за: 0.009 сек.