Фазовый способ измерения времени
Высокую, приемлемую для геодезических работ точность при использовании СРНС получают с помощью фазовых измерений непосредственно на несущих частотах L1 и L2 . Такие измерения выполняются специальными геодезическими приемниками. В этом способе измерения ведут не по кодам, а измерением фазы несущей частоты, длина волны которой порядка 20 см.
Полное изменение фазы jсигнала, проходящего расстояние от спутника до приемника, будет
j = 2p (N + D) ,
а расстояние D будет определяться по известной формуле из главы 5
D = l (N + D) , (6.6)
где N – целое число, D < 1.
Определение целого числа N называется разрешением неоднозначности (илиинициализациейизмерений). Определение дробной части Dназывается измерением фазового домера (фазовой задержки) и выполняется фазометром с относительной погрешностью 0,2–1%. При длине волны несущей порядка 20 см это соответствует 0,5...2 мм, т.е. точность фазовых измерений исключительно высока.
В разделе 5.3.2 было показано, что разрешение неоднозначности в современных светодальномерах обычно выполняется способом последовательного уточнения определяемого расстояния измерением на нескольких фиксированных (кратных) частотах с длинами волн l1 , l2 , ... ln , имеющих обычно соотношение 100:10:1. Числа N здесь невелики и определение их не представляет затруднений.
Второй способ – измерения с плавной перестройкой частоты, когда число неоднозначности N плавно изменяется на единицу (увеличивается или уменьшается), а в расстоянии укладывается целое число волн, т.е. D= 0.
Этому случаю соответствуют выражения для расстояния:
D = l1N ;
D= l2(N ± 1) ; (6.7)
D = l3(N ± 2) ;
. . . . .
При известных значениях l1 , l2 , ... в уравнениях (6.7) только два неизвестных: D и N . Для их определения достаточно составить два уравнения. Для контроля таких уравнений составляют больше двух.
Например: D = 60 м ;
l1 = 30 м ; N = 2 ; l2 = 20 м ; N +1 = 3 ; l3 = 15 м ; N + 2 = 4и т.д.
При фазовых измерениях выполняют измерения на одной частоте плавно изменяющегося расстояния до спутника.
В таком случае система уравнений (6.7) примет вид:
D1 = l(N + D1 ) ,
D2 = l(N + 1 + D2 ) ,
. . . . . (6.8)
Dn+1 = l(N + n + Dn+1 ) .
Как только приемник захватил сигнал спутника, цифровой фазометр начинает непрерывно измерять величину фазового сдвига и считать число переходов фазы через нуль, т.е. измерять величину ( n + Dn+1 ) . Тогда число неоднозначности N остается постоянным для всех расстояний Di от приемника до летящего спутника и может быть определено из системы (6.8).
Начальное значение D1 , а с ним и приближенное значение числа N, определяется измерением кодам.
Переход от расстояния Di к расстоянию Di+1 должен выполняться плавно, без сбоев в приеме сигнала, чтобы не было срывов (пропусков единицы) в счете числа n .
Ранее указывалось, что при любыхспутниковых измерениях появляется дополнительная неизвестная величина – поправка Dt часов приемника относительно часов спутника. При фазовом способе для одной серии измерения расстояний Dik до каждого из k одновременно наблюдаемых спутников неизвестными будут три координаты точки, k чисел N и одна поправка Dt :
Q = 3 + k +1 .
Приёмник выполняет и обрабатывает значительное число наблюдений из-за того, что разрешение неоднозначности при спутниковых измерениях – исключительно сложная задача, т. к. N – очень большое число. Действительно, если l = 0,2 м , D = 20 000 км , то N = 100 000 000 , а вычисление этого числа нужно выполнить с точностью D N < 0,5 .
Эту задачу решают с привлечением дополнительной информации, получаемой аналитическим путем из комбинации измерений. Это позволяет разрешить неоднозначность (выполнить инициализацию) достаточно быстро и надёжно.