Подготовительные и вспомогательные процессы


Подготовительные и вспомогательные процессы должны обеспечивать качественное и безопасное производство работ и в зависимости от местных условий и типа возводимого земляного сооружения включают разбивку земляных сооружений, водоотлив и понижение уровня грунтовых вод, временное крепление стенок выемок, искусственное закрепление грунтов.

Разбивка земляных сооружений. Разбивка сооружений состоит в установлении и закреплении их положения на местности. Разбивку осуществляют с помощью геодезических инструментов и различных измерительных приспособлений.

Рисунок 5.3.1 – Схема разбивки котлованов и траншей:

а—схема разбивки котлована; б—схема обноски, в—элементы обноски разового использования; г —инвентарная металлическая обноска; д —схема разбивки траншеи; 1— 1 и II —II— главные оси здания; ///—///—оси стен здания; 1—границы котлована; 2—обноска, 3— проволока (причалка), 4 —отвесы; 5 —доска, 6 —гвоздь, 7—стойка.

 

Разбивку котлованов начинают с выноса и закрепления на местности (в соответствии с проектом) створными знаками основных рабочих осей, в качестве которых обычно принимают главные оси здания /—/ и //—// (рис. 5.3.1, а).

После этого вокруг будущего котлована на расстоянии 2.. 3 м от его бровки параллельно основным разбивочным осям устанавливают обноску (рис. 5.3.1, б).

Обноска разового использования (рис 5.3.1, в) состоит из забитых в грунт металлических стоек или вкопанных деревянных столбов и прикрепленных к ним досок. Доска должна быть толщиной не менее 40 мм, иметь обрезную грань, обращенную кверху, и опираться не менее чем на три столбика. Более совершенной является инвентарная металлическая обноска (рис. 5.3.1, г). Для пропуска транспортных средств в обноске должны быть разрывы. При значительном уклоне местности обноски делают с уступками.

На обноску переносят основные разбивочные оси и, начиная от них, размечают все остальные оси здания. Все оси закрепляют на обноске гвоздями или пропилами и нумеруют. На металлической обноске оси закрепляют краской. Размеры котлована поверху, понизу и другие характерные его точки отмечают хорошо видимыми колышками или вехами. После возведения подземной части здания основные разбивочные оси переносят на его цоколь.

Для линейно протяженных сооружений (например, для коллектора) устраивают только поперечные обноски, которые располагают на прямых участках через 50 м, на закруглениях — через 20 м (рис. 5.3.1, д). Обноску устраивают также на всех пикетах и точках перелома профиля.

Все виды выемок (котлованы, траншеи, канавы и др.) до начала производства основных земляных работ защищают от стока поверхностных вод путем выполнения планировки, водоотводящих канав или оградительных обвалований.

Ширину и глубину дна водоотводящих (нагорных) канав принимают не менее 0,5 - 0.6 м, продольный уклон - не менее 0,003. Отрывают их с помощью плужных или многоковшовых канавокопателей. При устройстве дренажей для отвода грунтовых вод на водонепроницаемое дно траншей укладывают дренирующие материалы - камень, щебень, гравий. При значительном притоке вод применяют асбестоцементные или керамические трубы диаметром 125 - 300 мм, укладываемые с зазорами в стыках (без их заделки) и засыпкой дренирующими материалами.

При устройстве котлованов и траншей в водонасыщенном грунте применяют открытый водоотлив или искусственное понижение уровня грунтовых вод.

Открытый водоотлив предусматривает откачку протекающей воды непосредственно из котлованов или траншей. Приток воды к котловану (дебит) рассчитывают по формулам установившегося движения грунтовых вод.

При открытом водоотливе грунтовая вода, просачиваясь через откосы и дно котлована, поступает в водосборные канавы и по ним в приямки (зумпфы), откуда ее откачивают насосами (рис. 5.3.2, а). Водосборные канавы устраивают шириной по дну 0,3...0,6 и глубиной 1...2 м с уклоном 0,01...0,02 в сторону приямков. Приямки в устойчивых грунтах крепят деревянным срубом из бревен (без дна), а в оплывающих — шпунтовой стенкой.

Рисунок 5.3.2 – Открытый водоотлив из котлована (а) и траншеи (б):

1—дренажная канава, 2—приямок (зумпф), 3—пониженный уровень грунтовых вод; 4— дренажная пригрузка, 5—насос; 6—шпунтовое крепление; 7—инвентарные распорки; 8 — всасывающий рукав с сеткой (фильтром); Н —высота всасывания до 5...6 м

 

Грунтовый водоотлив обеспечивает снижение УГВ ниже дна будущей выемки. УГВ достигается их непрерывной откачкой водопонизительными установками из системы трубчатых колодцев и скважин, расположенных вокруг котлована или вдоль траншеи.

Для искусственного понижения уровня грунтовых вод разработан ряд эффективных способов, основными из которых являются иглофильтровый, вакуумный и электроосмотический.

Иглофильтровый способ искусственного понижения грунтовых вод реализуется с использованием иглофильтровых установок, состоящих из стальных труб с фильтрующим звеном в нижней части, водосборного коллектора и самовсасывающего вихревого насоса с электродвигателем.

 

Рисунок 5.3.3 – Схема иглофильтрового способа понижения уровня грунтовых вод:

а —для котлована при одноярусном расположении иглофильтров; б —то же, при двухъярусном, в —для траншей; г —стена работы фильтрующего звена при погружении в грунт и в процессе откачки воды; 1 —насосы; 2—кольцевой коллектор; 3 —депрессионная кривая; 4 —фильтрующее звено; 5—фильтрационная сетка; 6—внутренняя труба; 7—наружная труба; 8— кольцевой клапан; 9 —гнездо кольцевого клапана; 10 —шаровой клапан; 11 —ограничитель.

 

Стальные трубы погружают в обводненный грунт по периметру котлована или вдоль траншеи (рисунок 5.3.3).

Фильтрующее звено состоит из наружной перфорированной и внутренней глухой трубы. Наружная труба внизу имеет наконечник с шаровым и кольцевым клапанами. На поверхности земли иглофильтры присоединяют водосборным коллектором к насосной установке (обеспеченной резервными насосами). При работе насосов уровень воды в иглофильтрах понижается и из-за дренирующих свойств грунта он понижается и в окружающих грунтовых слоях, образуя новую границу уровня грунтовых вод. Иглофильтры погружают в грунт через буровые скважины или путем нагнетания в трубу иглофильтра воды под давлением до 0,3 МПа (гидравлическое погружение). Поступая к наконечнику, вода опускает шаровой клапан, а кольцевой клапан, отжимаемый при этом кверху, закрывает зазор между внутренней и наружной трубами. Выходя из наконечника под давлением, струя воды размывает грунт и обеспечивает погружение иглофильтра. Когда вода всасывается из грунта через фильтровое звено, клапаны занимают обратное положение.

Применение иглофильтровых установок наиболее эффективно в чистых песках и песчано-гравелистых грунтах. Наибольшее понижение уровня грунтовых вод, достигаемое в средних условиях одним ярусом иглофильтров, составляет около 5 м. При большей глубине понижения применяют двухъярусные установки.

Вакуумный способ водопонижения реализуют применением вакуумных водопонизительных установок. Эти установки используют для понижения уровня грунтовых вод в мелкозернистых грунтах (мелкозернистые и пылеватые пески, супеси, илистые и лёссовые грунты с коэффициентом фильтрации 0,02...1 м/сут), в которых применять легкие иглофильтровые установки нецелесообразно. При работе вакуумных водопонизительных установок вакуум возникает в зоне эжекторного иглофильтра.

Фильтровое звено эжекторного иглофильтра устроено по принципу легкого иглофильтра, а надфильтровое звено состоит из наружной и внутренней труб с эжекторной насадкой. Рабочую воду под давлением 750...800 кПа подают в кольцевое пространство между внутренней и наружной трубами, и через эжекторную насадку она устремляется вверх по внутренней трубе. В результате резкого изменения скорости движения рабочей воды в насадке создается разрежение и тем самым обеспечивается подсос грунтовой воды. Грунтовая вода смешивается с рабочей и направляется в циркуля­ционный бак. Из циркуляционного бака избыток воды (за счет поступления грунтовой) откачивается низконапорным насосом или сливается самотеком.

Явление электроосмоса используют для расширения области применения иглофильтровых установок в грунтах с коэффициентом фильтрации менее 0,05 м/сут. В этом случае наряду с иглофильтрами в грунт на расстоянии 0,5... 1 м от иглофильтров в сторону котлована погружают стальные трубы или стержни. Иглофильтры подключают к отрицательному (катод), а трубы или стержни — к положительному полюсу источника постоянного тока (анод).

Электроды размещают друг относительно друга в шахматном порядке. Шаг, или расстояние анодов и катодов в своем ряду, одинаков—около 0,75...1,5 м. Аноды и катоды погружают на одну и ту же глубину. Под действием электрического тока вода, содержащаяся в порах грунта, освобождается и перемещается в сторону иглофильтров- За счет движений этой воды коэффициент фильтрации грунта увеличивается в 5...25 раз.

Временное крепление стенок выемок. При разработке выемок в водонасыщенных грунтах или в стесненных условиях, когда при этом невозможно обеспечить требуемое заложение откосов, вертикальные стенки закрепляют специальными временными креплениями. Временная крепь может быть выполнена в виде деревянного или металлического шпунта, деревянных щитов с опорными стойками, щитов с распорными рамками и других конструкций (рис. 5.3.4).

Шпунтовое ограждение — наиболее дорогой из существующих способов. Применяют при разработке выемок в водонасыщенных грунтах вблизи существующих зданий и сооружений. Шпунт забивают до разработки выемок, чем обеспечивают устойчивое и естественное состояние грунта за ее пределами.

Крепление консольного типа состоит из стоек-свай, защемленных нижней частью в грунте глубже дна выемки. Они служат опорами для щитов (досок, брусьев), непосредственно воспринимающих давление грунта. Крепление консольного типа целесообразно при глубине выемки до 5 м.

Крепление распорного (горизонтально-рамного) типа — наиболее простое в исполнении, его применяют при устройстве траншей глубиной до 4 м в сухих или маловлажных грунтах. Крепление состоит из стоек, горизонтальных досок или дощатых (сплошных и несплошных) щитов и распорок, прижимающих доски или щиты к стенкам траншеи.

 

Рисунок 5.3.4 – Схемы временного крепления вертикальных стенок выемок (размеры в м):

а — шпунтовое ограждение 6 —консольное: в —консольно-распорное; г — распорное (горизонтально-рамное); д —подкосное, г —инвентарная трубчатая распорная рама. 1 —анкерная сван: 2 —оттяжка; 3 —маячная свая (опорная стойка); 4 —направляющая; 5 —шпунтовое ограждение. 6 —щиты (доски); 7—стойка распорной рамы; 8 —распорка; 9 —наружная труба; 10—внутренняя труба: 11—поворотная муфта; 12—опорная часть распорки.

Наиболее эффективны инвентарные распорные рамы из трубчатых стоек и распорок ввиду их малой массы, легкого монтажа и демонтажа (рис; 5.3.4, е)

При отрывке широких котлованов может применяться подкосное крепление вертикальных стенок. Оно состоит из щитов или досок, прижатых к грунту стойками, раскрепленными подкосами и упорами. Подобное крепление используют ограниченно, так как подкосы и упоры, расположенные в котловане, усложняют производство работ.

Искусственное закрепление грунтов. Искусственное закрепление грунтов представляет собой совокупность воздействий, в результате которых повышается прочность грунта; он становится неразмываемым, а в некоторых случаях и водонепроницаемым.

Закрепление грунтов применяют при создании вокруг разрабатываемых выемок водонепроницаемых завес или повышения несущей способности грунтовых оснований. В зависимости от физико-механических свойств грунта, его состояния, требуемой степени и назначения закрепления применяют замораживание, цементацию, битумизацию, химический, термический, электрический, электрохимический и другие способы искусственного закрепления грунтов-

Замораживание грунтов применяют в сильно водонасыщенных грунтах (плывунах) при разработке глубоких выемок. Для этого по периметру котлована погружают замораживающие колонки из труб, соединенных между собой трубопроводом, по которому нагнетают специальную жидкость — рассол (растворы солей с низкой температурой замерзания), охлажденный холодильной установкой до —20... —25°С. Рассол в холодильной установке охлаждают так называемыми хладоагентами —аммиак, реже углекислота (диоксид углерода).

Отгружающий грунт замерзает концентрическими цилиндрами с постепенно увеличивающимися диаметрами. Эти цилиндры смерзаются в сплошную стенку мерзлого грунта, которая выполняет функцию конструкции ограждений временной выемки. Расстояние между колонками зависит от гидрогеологических и температурных условий производства работ, глубины выемки и назначается в среднем от 1.5 до 3 м.

Цементация и битумизация заключаются в инъецирований соответственно цементного раствора или разогретых битумов. Их применяют для пористых грунтов с высоким коэффициентом фильтрации, а также трещиноватых скальных пород,

Химическим способом закрепляют песчаные и лёссовые грунты посредством нагнетания в них через инъекторы химических растворов. Химический способ может быть двух и однорастворный.

Двухрастворное закрепление заключается в последовательном нагнетании в грунт сначала водного раствора силиката натрия, а затем хлористого кальция . Растворы вступают в реакцию и образуют гель кремниевой кислоты , который обволакивает зерна грунта и, твердея, связывает их в монолит. Этот, способ применяют в достаточно хорошо дренирующих грунтах (коэффициент фильтрации >2 м/сут). При этом прочность грунта достигает 1,5... 3 МПа.

Однорастворное закрепление (смесь силиката натрия и отвердителя) применяют для слабодренирующих грунтов с коэффициентом фильтрации менее 0,3 м/сут. Прочность закрепленного грунта составляет 0,3...0,6 МПа.

Раствор при химическом закреплении нагнетают специальными трубами —инъекторами.

Термическое закрепление применяют для лёссовых грунтов. Оно реализуется в результате обжига раскаленными газами, нагнетаемыми через скважину в поры грунта. Газы образуются при сжигании жидкого или газообразного топлива, подаваемого в толщу грунта вместе с воздухом через жаропрочные трубы в заранее пробуренную скважину.

Электрическим способом закрепляют влажные глинистые грунты. Заключается он в использовании эффекта электроосмоса, для чего через грунт пропускают постоянный электрический ток с напряженностью поля 0,5... 1 В/см и плотностью 1...5 А/м2. При этом глина осушается, сильно уплотняется и теряет способность к пучению.

Электрохимический способ отличается от предыдущего тем, что одновременно с электрическим током в грунт вводят через трубу, являющуюся катодом и служащую инъектором растворы химических добавок, увеличивающие проводимость тока, благодаря чему интенсивность процесса закрепления грунта возрастает.

Разработку котлованов в водонасыщенных грунтах производят также под защитой металлического или деревянного шпунта, противофильтрационных завес, которые выполняются методом "стена в грунте" или с применением методов, основанных на изменении механических свойств водонасыщенных грунтов (искусственное замораживание, силикатизация, цементация, битумизация и др.).

Рытье котлованов и траншей с вертикальными стенками без крепления осуществляется на глубину не более 1 - 1,25 м в песчаных грунтах и супесях, 1,3 — 2 м - в суглинках и глинах. При рытье на большую глубину предусматривается устройство креплений стенок выемок (рисунок 5.3.5). Основными являются четыре типа креплений: консольные, стойки которых забиваются в грунт на глубину ниже отметки дна выемки; распорные (стойки не забиваются в грунт, а раскрепляются распорками); подкосные (крепления свободно ставятся на грунт и крепятся подкосами, которые упирают в специальные якоря - короткие сваи, забитые в дно выемки); опускные, погружаемые в грунт при его подработке.

Рис. 5.3.5 - Виды креплений стенок выемки:

а - консольное безраспорное, 6 - консольное с наружной анкеровкой; б - консольное с глубинной анкеровкой, г распорное; д - полюсное; е - опускное; 1 – существующие конструкции; 2 - ограждение; 3 - котлован; 4 - анкер; 5 - распорка; 6 -подкос; 7 - спускной колодец.

 

Крепления применяются, как правило, инвентарные. Конструкция креплений, порядок их установки, разборки и способ разработки грунта взаимно увязываются для обеспечения возможности максимальной механизации всех видов работ и многократного использования креплений.

Слабые грунты повышенной водопроницаемости (торфяные, пылевидные, глинистые, насыпные) могут быть заменены песчаными подушками (дорогой способ).

Для улучшения физико-механических характеристик грунтов существует несколько методов, основными из которых являются: динамическая консолидация грунта (трамбование); виброуплотнение; устройство гравийных, песчаных, известняковых и других вертикальных уплотняющих дрен (геомассивов), когда благодаря повышенной водопроницаемости происходит вытеснение части воды из пор грунта, быстрое оседание пригружаемого грунта и рост его несущей способности; забивка сборных бетонных и железобетонных свай. Выбор метода усиления основания под фундаменты зависит от технических, организационных и экономических факторов, которые необходимо анализировать индивидуально для каждого объекта.

Глубинное уплотнение грунтов пробивкой скважин (грунтовыми сваями диаметром 0,4 - 1,2 м на глубину до 20 - 28 м) в основном с помощью станков ударно-канатного бурения осуществляется с одновременным созданием вокруг них уплотненных зон и последующим заполнением пробитых скважин местным грунтом с уплотнением. При расположении скважин на расстоянии, равном 2 - 3,5 их диаметра, уплотненные зоны смыкаются, образуется массив плотного грунта.

Метод уплотнения слабых грунтов вибрированием предусматривает применение глубинных вибраторов специальной конструкции, являющихся навесным оборудованием к базовой грузоподъемной машине со стрелой. Места погружения вибраторов назначаются по треугольной сетке при расстоянии между ними от 1.6 до 3 м.

Одним из экономичных способов модификации грунтовой основы в сложных инженерно-геологических условиях, особенно при гравелистых грунтах и крупнозернистых песках, является струйная технология. В заранее пробуренную технологическую скважину опускают мониторное устройство, и подаваемая под большим давлением струя жидкости, экрани­руемая потоком сжатого воздуха, размывает в грунтовом массиве щель. Одновременно из отверстий скважинного монитора подается раствор-заполнитель.

Различают две принципиальные технологические схемы струйной технологии: сквозную и тупиковую. При сквозной схеме выброс отработанного грунта на поверхность осуществляется через отдельную скважину, пробуренную по направлению размыва на определенном расстоянии. При тупиковой схеме выброс пульпы происходит через ту же скважину, в которую опущен скважинный гидромонитор.



Дата добавления: 2021-07-22; просмотров: 234;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.018 сек.