Пористость, плотность горных пород


Основные понятия предмета физики горных пород

 

ФГП – оформившаяся в самостоятельный раздел горной науки в 60-х годах прошлого века, положила начало новому подходу к породе как объекту геологических, физических исследований и горных разработок одновременно.

ФГП изучает физические свойства породы и процессы с целью использования их для решения задач горного производства.

Место ФГП среди других наук определяется ее методами, объектами и направленностью исследований.

По объектам исследований ФГП близка к геологическим наукам – кристаллографии, минералогии, петрографии. Без знания минерального состава и структурно-текстурных особенностей пород и условий их залегания невозможно изучение физических свойств пород, обоснованное объяснение физических явлений, происходящих в них. Поэтому данные о составе, строении, генезисе пород, их залегании ФГП заимствует у геологических наук и использует для своих исследований.

По методам исследований ФГП близка к физике твердого тела, явления и свойства объясняются и изучаются с позиций современной физики твердого тела, используется ее математический аппарат и экспериментальные методы.

В тоже время, изучаемые ФГП объекты значительно разнообразнее, более сложны и зависят от большего количества случайных факторов, чем в физике твердого тела. Законы влияния и возникновения всех этих факторов практически невозможно одновременно учесть. В связи с этим в ФГП широко применяется аппарат теории вероятности и мат. статистики, что предопределяет использование экспериментально установленных закономерностей и корреляционных зависимостей, использование для описания физических явлений в породах макроскопического (феноменологического) метода.

В целях совершенствования горного производства ФГП изыскивает резервы повышения производительности труда через познание свойств горных пород. Горное производство как в условиях открытых, так и подземных горных работ состоит в общем виде из следующей технологической цепочки: бурение, взрывание, выемка взорванной массы, транспортирование пород, их складирование, первичная обработка, измельчение полезного ископаемого и его обогащение. Эти стадии процесса добычи полезного ископаемого связаны с воздействием на породу различных машин и механизмов. При этом наибольшая эффективность работы горного предприятия достигается при оптимальном соответствии параметров машин и механизмов физическим характеристикам породы.

Параметры машин и механизмов должны быть приспособлены к изменяющимся свойствам горных пород. Их высокая эффективность будет зависеть от наличия датчиков и устройств, дающих информацию о свойствах, составе и состоянии массива пород. Следовательно, разработка методов контроля процессов также входит в задачи ФГП.

Физические параметры пород не являются строго неизменными и в некоторых пределах ими можно управлять. Например, свойства пород могут меняться при нагреве, охлаждении, насыщении их жидкостями, воздействии эл. тока и т.д. Поэтому возникает задача исследования результатов таких воздействий на породу.

Изучение физических явлений в породах дает возможность совершенствовать как машины и механизмы, так и методы горной технологии, создавать принципиально новые способы добычи полезных ископаемых и извлечение полезных ископаемых из руд.

Из вышеизложенного вытекают следующие научные и практические задачи, которые решает ФГП:

А) Установление физических, физико-технических и технологических характеристик горных пород, необходимых для расчета режимов работы и производительности существующего горного оборудования при проектировании горных предприятий и планирования их работы.

Б) Разработка и создание принципиально новых физических методов воздействия на породы, выявление областей их применения, расчет их эффективности.

В) Разработка принципиально новой технологии производства горных работ на базе изучения физических свойств пород.

Г) Изыскание методов и путей создания систем контроля за составом, состоянием и поведением горных пород в процессах горного производства, основанных на изучении свойств пород.

ФГП подразделяется на следующие разделы:

1) Механику пород, изучающую механические свойства пород и механические явления, происходящие в породах в процессе разработки месторождений полезных ископаемых.

2) Акустику пород, изучающую распространение упругих колебаний в породах и все физические процессы, с ними связанные.

3) Термодинамику пород, в область исследования которой входят тепловые свойства и тепловые процессы в горных породах.

4) Электродинамику и радиационную физику пород, объединяющую исследования по электрическим, магнитным, радиоволновым и ядерным свойствам и явлениям в горных породах.

 

 

Лекция №2

Минералы

 

Под минералом понимают любое природное химическое соединение, образовавшееся при различных химических и физико-химических процессах в земной коре. К минералам относятся также индивидуализированные элементы, обнаруживаемые в земной коре (самородные металлы и металлоиды).

Минералы могут быть газообразные (природный газ), жидкие (нефть, ртуть, вода) и твердые (рудные минералы и др.). Количество природных соединений ограниченно; всего на настоящее время, известно около 4100 различных минералов. В большинстве случаев это твердые кристаллические химические соединения. Каждый год открывают в среднем около 50 новых минералов. В настоящее время многие минералы выращиваются искусственно.

Минералы распределяются в земной коре весьма неравномерно. В образовании горных пород основную роль играют только около 30 так называемых породообразующих минералов, из которых наиболее распространены полевые шпаты — натриевые, калиевые и кальциевые алюмосиликаты, составляющие 60% верхней части земной коры, амфиболы и пироксены — 17%, кварц — 12% и слюды — 3,8%.

Большинство других минералов присутствует в породах в незначительном количестве. Однако именно они имеют огромное значение для различных производств. В тоже время, такие добавочные (акцессорные) минералы оказывают большое влияние на свойства горных пород.

Минералы встречаются в виде одиночных хорошо образованных кристаллов и зерен, рассеянных в породе, поликристаллических плотных и землистых масс, натеков, налетов, корочек и желваков. Некоторые кристаллы, такие, как кварц, полевой шпат и сподумен, могут быть очень больших размеров, однако большинство минералов встречается в виде мелких кристаллов.

Минералы имеют свою пространственную решетку, соответствующую закону распределения вещества внутри кристалла. Известно семь типов (сингоний) кристаллических решеток, характеризуемых отношениями размеров кристаллических осей a, b, c (наименьших расстояний между узлами решетки в трех направлениях) и углами между ними α, β, γ (рис. 1):

первая сингония — триклинная(a ≠ b ≠ c; α β γ 90°);

вторая сингония — моноклинная (a ≠ b ≠ c; α =γ =90°; β 90°);

третья сингония — ромбическая (a ≠ b ≠ c; α =γ =β 90°);

четвертая сингония — тетрагональная (a = b ≠ c; α =γ =β =90°);

пятая сингония — тригональная (a = b = c; α =β =γ 90°);

шестая сингония — гексагональная (a = b ≠ c; α =β =90° γ =120° );

седьмая сингония - кубическая (a = b= c; α =β =γ =90°);

Физические свойства одиночного кристалла определяются его химическим составом и силами связей между частицами, входящими в пространственную решетку.

Существуют следующие типы связей – ионная (полярная), ковалентная (гомеополярная), металлическая, молекулярная.

Если взаимодействующие атомы имеют различную электроотрицательность, валентные электроны[1] от атома с меньшей электроотрицательностью переходят к атому с большей электроотрицательностью. В результате образуется ионная, или полярная, связь, обусловленная кулоновскими силами взаимодействия. Характерными представителями минералов с ионным типом являются галит КС1 и сильвин КС1.

В случае если соединяющиеся атомы имеют равные или между собой близкие значения электроотрицательности, то связывающие их электроны располагаются симметрично по отношению к ядрам этих атомов. Возникает ковалентная[2], или гомеополярная, связь, которую имеют, например, кварц и алмаз; минералы, обладающие такой связью, характеризуются большой твердостью и высокой температурой плавления.

В узлах решетки металлов находятся лишь положительные ионы[3]. Валентные электроны отделены от своих атомов и легко могут переходить от одного иона к другому; такого типа связи называются металлическими, их имеют, например, самородные золото и медь.

Если решетка кристалла образуется не атомами, а нейтральными молекулами, то связь между ними обуславливается электростатическими силами притяжения, возникающими вследствие поляризации взаимодействующих молекул; такие связи называются молекулярнымии по величине меньше предыдущих.

Свойства поликристаллических агрегатов наряду со свойствами составляющих кристаллов также зависят от сил сцепления между кристаллами. Эти силы обычно слабее внутрикристаллических и близки по величине к молекулярным.

Кристаллы анизотропны; их свойства зависят от направления, в котором производится измерение.

В агрегатах кристаллы обычно не ориентированы, располагаются беспорядочно, поэтому минеральные агрегаты в целом почти изотропны. Они имеют различную макроструктуру, определяющую их свойства. Макроструктура характеризуется размерами, формой кристаллов и их взаимным расположением. Широко распространены зернистые, лучистые, волокнистые, болитовые и другие минеральные агрегаты.

Характерным признаком некоторых минералов является спайность — способность раскалываться по плоским блестящим поверхностям. Явление спайности — следствие наличия в минералах направлений с ослабленным сцеплением частиц. Весьма развита спайность, например, у слюды. Агрегаты, сложенные такими минералами, анизотропны.

По химическому составу минералы принято делить на следующие группы:

самородные элементы (золото, серебро, мышьяк, сера, сурьма, алмаз);

сульфиды(халькозин Сu2S, сфалерит ZnS, киноварь HgS, пирит FеS2);

окислы (куприт Сu2О, корунд А12O3, гематит Fе2O3, кварц SiO2);

силикаты (оливин, тальк, мусковит, биотит, серпентин, каолинит, калиевые полевые шпаты );

соли кислородных кислот — сульфаты, вольфраматы, карбонаты и т. д. (ангидрид СаSO4, барит ВаSO4, шеелит СаWO4, кальцит СаСО3);

галоидные соединения (флюорит СаF2, галитNаС1, сильвин КС1).

Минералы подразделяются по генезису[4] на группы. Различают магматогенные минералы, образовавшиеся как непосредственно из магмы, так и из магматогенных горячих растворов, экзогенные (осадочные) минералы, возникшие вблизи поверхности Земли при участии агентов выветривания, и метаморфические минералы, образовавшиеся на глубине в результате изменения других минералов.

Часто один и тот же минерал может образовываться в различных условиях. Например, слюда может быть магматогенной и метаморфической.

 

 

Лекция №3

Горные породы

Горная порода — это природное образование, агрегат минералов более или менее постоянного состава, слагающий самостоятельные геологические тела. Если минерал — химическое соединение элементов, то горная порода — механическое соединение минералов. Горная порода может состоять из кристаллических, аморфных, жидких и газообразных минералов.

Свойства пород в первую очередь зависят от их минерального состава и макростроения (структурно-текстурных признаков). Содержание в породе различных минералов, выраженное в процентах, называется ее количественным минеральным составом и является одним из основных определяющих ее признаков.

В зависимости от характера связей отдельных зерен различают следующие типы пород:

рыхлые (раздельно-зернистые) породы — механические смеси различных минералов или зерен одного минерала, не связанных между собой, например песок, гравий, галечник;

связные (глинистые) породы — породы с водно-коллоидными связями частиц между собой; например глины, суглинки, бокситы; их отличительной особенностью является высокая пластичность при насыщении водой;

твердые (скальные и полускальные) породы — породы с жесткой, упругой связью между частицами минералов, например песчаники, граниты, диабазы, гнейсы; связи между минеральными зернами скальных пород наиболее прочны.

Важнейшими признаками строения пород являются их структура и текстура.

 

Структура
Кристаллическая: грубо - и крупнозернистая Порода целиком состоит из кристаллических зерен; размер зерен 0,5- 5 мм
среднезернистая Размер зерен до 0,5 мм
мелкозернистая Размер зерен менее 0,25 мм
афанитовая Зерна различимы лишь в лупу
Скрытокристаллическая Кристаллы не видны даже при увеличении
Стекловатая Сплошная стекловатая масса
Порфировая В общую стекловатую или кристаллическую массу вкраплены крупные зерна
Обломочная Породы сцементированы из обломков
Текстура
Массивная Частицы породы не ориентированы, плотно прилегают друг к другу
Пористая Частицы породы не плотно прилегают друг к другу, образуя большое число микропустот
Слоистая Частицы породы чередуются, образуя слои и напластования

 

Если название породы обычно дает общее представление о ее минеральном составе и строении[5], то судить о свойствах пород, основываясь, лишь на их названии, можно только весьма приближенно. Только изучение минерального состава и строения конкретных пород дает возможность прогнозировать их физико-технические характеристики.

Как минеральный состав, так и строение горных пород определяются их генезисом и воздействием различных внешних факторов движением земной коры, деятельностью ветра и воды, давлением, температурными колебаниями) в течение всего периода их существования.

Магматические породы (гранит, сиенит, дунит, габбро, базальт, диорит) по содержанию кремнезема (SiO2) условно подразделяются на кислые (> 65%), средние (52 - 65%), основные (52 - 40%) и ультраосновные (<40%). Наиболее распространенными кислыми породами являются гранит, липарит, кварцевый порфир; средними — диорит, андезит, сиенит, трахит; основными — габбро, базальт; ультраосновными — перидотит, пироксенит, дунит.

Осадочные породы — породы, возникшие путем отложения (механического, химического или органического) из воды или воздуха продуктов разрушения магматических и метаморфических пород (известняки, песчаники, трепела, ископаемые угли, осадочные железные руды и др.).

Метаморфические породы — породы, возникшие в результате преобразования магматических или осадочных пород под воздействием высоких давлений, температур и горячих газоводяных растворов (кварцит, кристаллические сланцы, гнейсы, мрамор).

Каждой генетической группе свойствен определенный ряд минералов. Для магматических пород характерны лейцит, нефелин, анортоклаз, оливин; для метаморфических — гранаты, тальк, сер­пентин; для осадочных — кальцит, гипс, доломит, галоидные соединения, каолинит и др.

Условия образования горных обуславливает их строение. Например, в магматических породах крупность кристаллов, их форма, наличие или отсутствие стекловатой массы обусловлены давлением и скоростью затвердевания магмы.

В осадочных породах слоистость и пористость, а также способ цементации обломочного материала определяется условиями накопления осадков.

В метаморфических породах степень метаморфизации пород их перекристаллизацию и, следовательно, строение (сланцеватость, пористость, зернистость) определяют температура и состав горячих растворов, давление, его характер и длительность воздействия.

В магматических породах практически отсутствует слоистость, в то время как в осадочных толщах слоистость является одним из основных признаков строения.

Отличительной особенностью горных пород является их многоагрегатность, так как поры и трещины пород в естественных усло­виях обычно заполнены газами, жидкостью или инородными породами, что предопределяет изменение физических характеристик породы в широких пределах.

Характерными многоагрегатными представителями являются ископаемые угли (органогенные горные породы), и представляющие собой аморфную массу, являющуюся механической смесью или твердым раствором различных органических компонентов с включением неорганических примесей[6].

 

Лекция №4

Пористость, плотность горных пород

 

Общая пористость пород Рколичественно выражается через объем всех пор VП в долях единицы (часто в процентах) от общего объема породы (V0+ VП ).

Отношение объема пор к объему минерального скелета V0породы называется коэффициентом пористости kп

, следовательно

Поры в горных породах по происхождению делятся на первичные, формирующиеся при образовании пород, и вторичные, появившиеся в результате различных процессов метаморфизма, выщелачивания, перекристаллизации и т. п.

Порыпо величине подразделяются на субкапиллярные (диаметр пустот менее 0,2 мк), капиллярные (0,2—100 мк) и сверхкапиллярные (более 100 мк). Принято выделять и рассматривать отдельно такие пустоты в породах, как трещины и каверны.

По форме поры могут быть самого различного типа — пузырчатые, каналовидные, щелевидные, ветвистые и т. п. Форма и размер отдельных пор и их взаимная связь определяют форму порового пространства породы.

Часто поры могут соединяться с внешней средой и между собой, образуя сплошные извилистые каналы. Общий объем таких пор, отнесенный к объему всей породы, называется открытой (эффективной) пористостью. При этом Рэф < Р.

Пористость горных пород изменяется в значительных пределах — от долей процента до 90%. Высокой пористостью обладают осадочные породы, а магматические породы имеют незначительную пористость. Исключение составляют изверженные разности пород, такие, как туфолавы, трахит (Р = 55 - 60%). Выветрившиеся магматические породы также имеют высокую пористость.

Пористость зависит от формы и размеров зерен, слагающих породу, от степени их отсортированности, сцементированности и уплотненности.

Если породы сложены частицами одинакового размера, то наименьшей пористостью обладают породы с окатанными зернами, наибольшей - с угловатыми плоскими зернами. На величину пористости существенно влияет взаимное расположение зерен.

У равномернозернистых пород пористость больше, чем у неравномернозернистых, поскольку промежутки между крупными частицами заполняются более мелкими частицами; пористость сцементированных пород тем меньше, чем больше цементирующего материала заполняет промежутки между частицами и чем плотнее сам цемент.

Пористость снижается с увеличением глубины залегания, так как в результате давления происходит уплотнение горных пород.

Масса единицы объема твердой фазы (минерального скелета) породы называется плотностью породы δ0.

Плотность минералов зависит от их химического состава и структуры. Они делятся на тяжелые0 > 4 г/см3), средние0= 4 - 2,5 г/см3) и легкие0 < 2,5 г/см3); 13% всех минералов относятся к легким, 33,8% — к тяжелым, 53,2% — к средним.

Плотность горных пород определяется плотностью слагающих минералов δ0i и может быть рассчитана по формуле

где n - число минералов, слагающих породу; Vi — доля объема, занимаемого каждым минералом.

Масса единицы объема породы в ее естественном состоянии отличается от массы той же единицы объема, заполненного только твердой фазой породы; такое отличие обусловлено в первую очередь пористостью породы.

Поэтому в горном деле наряду с плотностью широко пользуются понятием объемной плотности δ. Объемной плотностью называется масса единицы объема породы при данной пористости в ее естественном состоянии. Плотность пород всегда больше их объемной плотности.

Связь между объемной плотностью и плотностью выражается через пористость:

δ = δ0(1 - Р); δ0 = δ(1 + kп ),

где Р — пористость в долях единицы.

Если порода сложена из минералов примерно одинаковой плотности, ее объемная плотность в основном зависит от пористости[7].

Объемная плотность малопористых пород в основном зависит от их минерального состава[8].

Объемная плотность большинства пород колеблется от 1,5 до 3,5 г/см3. Большой объемной плотностью обладают рудные полезные ископаемые, так как в их состав в значительном количестве входят тяжелые рудные минералы (гематит, магнезит, сидерит, киноварь).

Низкую объемную плотность имеют гидрохимические осадки — гипс (объемная плотность 2,3 г/см3), каменная соль (2,1 г/см3). Весьма низкими значениями объемной плотности (0,72—2,0 г/см3) обладают каменные угли и торф. Объемная плотность углей определяется их пористостью, содержанием углерода и наличием минеральных примесей. Так как углерод имеет плотность 2,3 г/см3, увеличение степени углефикации приводит к росту объемной плотности углей. Этому способствует также тот фактор, что при переходе к более метаморфизованным углям (бурые угли — газовые угли — антрацит) наблюдается снижение пористости.

Повышенные значения объемной плотности углей одной степени метаморфизации указывают на увеличение в углях минеральных примесей и зольности, поскольку примеси имеют большие значения плотности, чем углерод.

Вес единицы объема твердой фазы породы называется удельным весом γ0 породы, а вес единицы объема породы в естественном состоянии — объемным весом γ. Удельный вес породы и ее плотность связаны соотношением

γ0 =g δ0

где g— ускорение силы тяжести.

Рис. 3. Изменение плотности магматических пород в зависимости от минерального состава

На практике иногда пользуются коэффициентом плотности kпл — отношением объемного веса пород к удельному весу (или отношением соответствующих плотностей), характеризующим степень заполнения объема горной породы минеральным веществом:

 

Лекция №5

Трещиноватость и содержание воды в породах

Трещиной называют плоский разрыв сплошности среды, величина которого на порядок и более превосходит межатомные расстояния в кристаллической решетке (10-10 м). Разрывы сплошности, заполненные материалом, отличающимся по своим свойствам от основной среды, также относятся к трещинам.

Трещиноватость массива горных пород — одна из важнейших характеристик, влияющая практически на все процессы горного производства.

В зависимости от размеров трещины бывают трех порядков (табл. 1).

Трещины первого порядка - представлены внутрикристаллическими дефектами и трещинами. Размеры этих трещин колеблются от 10-9 до 10-5 м. Образуются в результате сложения кристаллов минерала отдельными блоками, которые смещены друг относительно друга. Это обуславливает мозаическую структуру кристалла с присущими ей внутрикристаллическими дефектами и трещинами.

Трещины второго порядка - представлены трещинами, находящимися между самими кристаллами, а также трещинами в межкристаллитном цементе. Размеры этих трещин имеют тот же порядок, что и размеры слагающих породу кристаллов, а величина раскрытия может достигать 0,1 мм и более.

Трещины первых двух порядков возникают в основном в процессе диагенеза осадков[9] или кристаллизации магмы, их ориентирование в общем случае хаотично.

Эти трещины определяют сопротивляемость пород процессам бурения, измельчения в дробилках, выемке многочерпаковыми экскаваторами и комбайнами. Решающее влияние при этом оказывают трещины второго порядка. Они же до некоторой степени определяют эффективность выемки пород одноковшовыми экскаваторами и процессов механического и взрывного рыхления.

Трещины третьего порядка - трещины, возникающие в процессах метаморфизации пород за счет потери воды и летучих веществ, а также в процессе остывания за счет уменьшения объема пород. Эти трещины тесно связаны с отдельными пластами, потоками лав или интрузиями[10]. К этому порядку относятся тектонические трещины, развивающиеся в горных породах под воздействием тектонических сил, проявляющихся в земной коре в процессе ее развития. В их число входят трещины отрыва и скалывания, а также кливаж[11].

Тектонические трещины обычно образуют четко выраженные системы двух почти взаимно перпендикулярных крутопадающих рядов трещин, секущих пласты пород независимо от их состава и возраста.

К трещинам третьего порядка относят искусственные трещины, появляющиеся в породах при ведении горных работ.

К перечисленным видам трещин на обнажениях добавляются трещины выветривания, которые развиваются на глубину от 2 до 10 м по уже имеющимся трещинам или по нетронутому массиву.

Все трещины третьего порядка имеют значительное простирание, измеряемое сантиметрами, метрами и даже километрами.

По степени проявления трещины третьего порядка делятся на открытые, закрытые и скрытые. Эти трещины могут заполняться другими породами, продуктами выветривания, водой и нефтью или же оставаться незаполненными.

Характерной особенностью трещин третьего порядка является то, что они, пересекаясь, делят породы на отдельности более или менее правильной формы. Эти трещины оказывают наиболее существенное влияние на процессы разрушения пород при их выемке и рыхлении, при сдвижениях, оползнях и обвалах.

Наряду с размерами и густотой трещин большую роль играет и характер сети трещин в уступе — имеют ли они одно направление или составляют системы взаимно пересекающихся трещин.

В пористых и трещиноватых породах всегда имеется то или иное количество воды. При этом различают химически связанную, физически связанную и свободную воду.

Химически связанная воданаряду с другими молекулами и ионами входит в состав кристаллической решетки минералов; удаление такой воды приводит к разрушению минерала, превращению его в другое, безводное соединение.

Вода, находящаяся в кристаллической решетке в виде молекул, называется кристаллизационной. Она характерна, например, для гипса (СаSO4 ·2Н2O), опала (SiO2 nH2O), карналлита (KCl·MgCl2·6Н2O) и многих других минералов. Кристаллизационная вода, как правило, удаляется при температуре 200—600° С.

Воду, образующуюся при нагреве из входящих в кристаллическую решетку гидроксильных ионов (ОН- и Н+), называют конституционной, температура ее выделения до 1300°С. Она характерна для таких минералов, как тальк, малахит, каолинит и др.

Наличие в породе химически связанной воды проявляется только при ее нагревании; она обуславливает изменение свойств породы при высоких температурах. Вследствие нарушения кристаллической решетки минералов при выделении из них химически связанной воды происходит ослабление и разрушение пород, а в ряде случаев их упрочнение (глины).

Физически связанная водатесно соединена молекулярными силами притяжения с твердыми частицами породы, обволакивая их в виде пленки. Физически связанная вода не перемещается в породах, имеет высокую плотность (до 1,74 г/см3), низкую температуру замерзания (—78°С), низкие теплоемкость, диэлектрическую проницаемость, электропроводность и не является растворителем. Она удаляется из породы только нагреванием до температуры 110°С. Поэтому наличие такой воды значительно изменяет физические свойства пород.

Количество физически связанной воды зависит от смачиваемости пород. Смачиваемость — способность горной породы покрываться пленкой жидкости[12].

Большинство горных пород относится к хорошо смачиваемым водой (гидрофильным).

Частично или полностью несмачиваемы (гидрофобные) — сера, угли, битуминозные песчаники и некоторые другие породы.

Адсорбционная способность пород возрастает при наличии в них растворимых солей, глинистых минералов, а также с увеличением удельной поверхности твердой фазы. Наблюдается увеличение адсорбционной способности с уменьшением размеров частиц рыхлой породы и увеличением их угловатости.

Количество физически связанной воды в породах оценивается показателями максимальной гигроскопичности и максимальной молекулярной влагоемкости[13]. Максимальная гигроскопичность wг — наибольшее количество влаги, которое способна адсорбировать на своей поверхности горная порода из воздуха с относительной влажностью 94%.

Молекулярная (или пленочная) влагоемкостъ wм— количество воды, удерживаемой силами молекулярного притяжения на поверхности частиц породы:

где Gм — вес влажного образца породы; Gс — вес образца породы, высушенного при температуре 105—110° С.

Свободная водав породах может находиться в виде капиллярной воды, удерживаемой в мелких порах силами капиллярного поднятия, и в виде гравитационной воды, заполняющей крупные поры и передвигающейся в породах под действием сил тяжести или напора.

Количество капиллярной воды оценивается величиной капиллярной влагоемкости, которая зависит от среднего размера поровых каналов, перпендикулярных зеркалу грунтовых вод в изучаемом объеме.

В зависимости от минерального и гранулометрического состава пород и формы частиц соотношение количества видов воды в породах различно. Так, пески содержат в основном гравитационную воду, а глины, лёсс и суглинки — молекулярную и капиллярную. Относительное содержание капиллярной воды в глинах составляет 18—50%.

Капиллярная вода, находящаяся в породе в оторванном от зеркала грунтовых вод состоянии (подвешенная вода), способствует увеличению связности породы, увеличивает допустимые нагрузки и углы откосов в отвалах. Если капиллярная вода связана с ее источником, она становится напорной и понижает устойчивость откосов. Вид воды определяет возможные способы осушения месторождения. Наиболее легко поддаются дренажу гравитационные воды, значительно труднее (отжатием, электродренажом) — капиллярные.

Максимальное количество связанной, капиллярной и гравитационной воды, которое способна вместить порода, характеризуется ее полной влагоемкостью:

Весовой , Объемной

где Gпвес породы, максимально насыщенной жидкостью; Gс — вес образца породы, высушенного при температуре 105—110° С; Vж — объем жидкости, заполняющей породу (Vж Gп - Gс ); Vпобъем породы.

Величина объемной полной влагоемкости примерно равна пористости породы. Если поры в породах не имеют свободного сообщения друг с другом, то в них может остаться некоторое количество защемленных газов даже при полном насыщении пород водой. Тогда .

В случае, когда вода способна проникнуть между пакетами кри­сталлических решеток некоторых минералов (монтмориллонит, вермикулит, галлуазит), наблюдается . Последнее явление характерно для связных (глинистых) пород.

Для характеристики породы в естественном состоянии пользуются параметром естественной влажности wе, равном относительному количеству воды, содержащейся в породах в природных условиях, и коэффициентом водонасыщения kвн, указывающим на степень насыщения породы водой:

.

Если we заменить w'п, а wп — пористостью Р, то коэффициент водонасыщения будет характеризовать степень максимального заполнения норового пространства водой.

Из максимально увлажненной породы извлечь механическими средствами всю воду невозможно. Весьма трудно отдают воду лёссы, глины, очень мелкие пески (плывуны).

Способность породы отдавать воду под механическим воздействием и под действием гравитационных сил характеризуется водоотдачей ξ:

ξ = wп - wм

Таким образом, чем больше молекулярная влагоемкость пород, тем меньше их коэффициент водоотдачи. Коэффициент водоотдачи зависит от размеров частиц, образующих породу, величины и взаимного расположения пор. Слабая водоотдача пород обычно снижает производительность механической и гидравлической разработки пород, затрудняет осушение месторождения, транспортирование и дробление полезного ископаемого.

 

 

Лекция №6



Дата добавления: 2016-10-26; просмотров: 8167;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.053 сек.