Построение графиков


Если исследуется функциональная зависимость одной величины от другой, то результаты могут быть представлены в виде графиков. Посмотрев на график, можно сразу оценить вид полученной зависимости, получить о ней качественное представление и отметить наличие максимумов, минимумов, точек перегиба, областей наибольшей и наименьшей скоростей изменения, периодичности и т.п. График позволяет также судить о соответствии экспериментальных данных рассматриваемой теоретической зависимости и облегчает обработку измерений.

При вычерчивании графиков соблюдают следующие правила.

1. Графики выполняются преимущественно на миллиметровой бумаге или бумаге со специальными координатными сетками.

2. В качестве осей координат следует применять прямоугольную систему координат. Общепринято по оси абсцисс откладывать ту величину, изменения которой являются причиной изменения другой (т.е. по оси абсцисс – аргумент, по оси ординат – функцию). Стрелки на концах осей графика можно не ставить, но обязательно указать обозначения физических величин и единицы их измерения. Если значения физической величины содержат множители 10n, то их относят к единице измерения.

3. Масштаб графика определяется интервалом изменения величин, отложенных по осям; погрешность на графике представляется в выбранном масштабе отрезком достаточной длины. Принятая шкала будет легко читаться, если одна клетка масштабной сетки будет соответствовать удобному числу: 1; 2; 5; 10 и т. д. (но не 3; 7; 1,2 и т. д.), которое представляет собой единицу отображаемой на графике величины.

Рис. 2. Зависимость изменения микротвердости от дозы УФ - облучения для кристаллов NaCl

На рисунке 2 приведен пример оформления графической зависимости значений микротвердости щелочно-галоидных кристаллов NaCl от дозы УФ - облучения.

4. Масштаб наносится на осях графика вне его поля в виде равноотстоящих «круглых» чисел, например: 2; 4; 6 и т.д. или 1,15; 1,25; 1,35 и т. д. Не следует расставлять эти числа слишком густо – достаточно нанести их через 2 или даже через 5 см. Около оси координат необходимо написать название величины, которая отложена по данной оси, её обозначение и единицу измерения.

5. На графике приводится только та область изменения измеренных величин, которая была исследована на опыте; не нужно стремиться к тому, чтобы на графике обязательно поместилось начало координат. Начало обозначают на графике только в том случае, когда это не требует большого увеличения его размеров.

6. Точки должны наноситься на график тщательно и аккуратно, чтобы график получился, возможно, более точным. На график наносят все полученные в измерениях значения. Если одна точка измерялась несколько раз, то можно нанести среднее арифметическое значение и указать разброс. Если на один и тот же график наносятся различные группы данных (результаты измерения разных величин или одной величины, но полученные в разных условиях и т. п.), то точки, относящиеся к разным группам, должны быть помечены различными символами (кружочки, треугольники, звёздочки и т. п.). Смысл обозначений должен быть приведен в пояснительной подписи. Для того чтобы различить кривые, принадлежащие разным семействам, используют сплошные, штриховые, пунктирные, цветные и т.п. линии.

7. Если можно определить абсолютные погрешности измерений и , то их откладывают по обе стороны от точки (рис. 2). Так как все измерения сделаны с той или иной погрешностью, то точки не «укладываются» на одной кривой. Поэтому между точками проводят прямую или плавную кривую линию, проходящую через интервалы абсолютных погрешностей так, чтобы возможно больше точек «легло» на эту линию, а остальные распределились равномерно выше или ниже ее.

8. Прямую зависимость на графике проводят карандашом с помощью линейки. Кривую проводят по экспериментальным точкам от руки.

9. При построении графика нужно стремиться к тому, чтобы он наиболее чётко отражал все особенности представляемой зависимости.

 

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА
ТРЕНИЯ СКОЛЬЖЕНИЯ С ИСПОЛЬЗОВАНИЕМ
ЗАКОНА СОХРАНЕНИЯ ЭНЕРГИИ

Для выполнения этой работы на трибометр помещают брусок и динамометр, связанные нитью (рис. 1.1).

Рис. 1.1. Трибометр с бруском и динамометром

 

Прикрепим к бруску крючок динамометра и попытаемся привести брусок в движение. При небольшом усилии растяжение пружины динамометра показывает, что на брусок действует сила упругости, но, тем не менее, брусок остается неподвижным. Это значит, что при действии на брусок силы упругости в направлении, параллельном поверхности соприкосновения бруска со столом, возникает равная ей по модулю сила противоположного направления. Сила, возникающая на границе соприкосновения тел при отсутствии относительного движения тел, называется силой трения покоя.

При увеличении внешней силы, прикладываемой к динамометру, брусок начнет двигаться. Во время равномерного движения бруска динамометр показывает, что на брусок со стороны пружины действует постоянная сила упругости . При равномерном движении бруска равнодействующая всех сил, приложенных к нему, равна нулю. Следовательно, кроме силы упругости, во время равномерного движения на брусок действует сила, равная по модулю силе упругости, но направленная в противоположную сторону. Эта сила называется силой трения скольжения .

Силы трения возникают благодаря существованию сил взаимодействия между молекулами и атомами соприкасающихся тел, а при движении вклад в силу трения дает неровность (шероховатость) поверхностей.

Если динамометр вместе с линейкой прижать рукой к столу, а брусок оттянуть, чтобы динамометр показывал некоторую силу , то потенциальную энергию пружины можно записать так:

, (1.1)

где – показание динамометра, а – деформация пружины.

После освобождения брусок будет двигаться до остановки, и потенциальная энергия пружины израсходуется на совершение работы по преодолению силы трения на пути . Эту работу можно представить таким выражением:

, (1.2)

где – коэффициент трения; – масса бруска; – ускорение свободного падения; – перемещение бруска.

По закону сохранения энергии

(1.3)

следовательно,

. (1.4)

Силу упругости пружины измеряют динамометром, деформацию пружины и перемещение бруска – масштабной линейкой, массу бруска – взвешиванием, – табличное значение.

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ВЯЗКОСТИ
ПРОЗРАЧНОЙ ЖИДКОСТИ ПО МЕТОДУ СТОКСА

Явления переноса объединяют группу процессов, связанных с неоднородностями плотности, температуры или скорости упорядоченного перемещения отдельных слоев вещества. К явлениям переноса относятся диффузия, внутреннее трение и теплопроводность.

Явлением внутреннего трения (вязкости) называется появление сил трения между слоями газа или жидкости, движущимся друг относительно друга параллельно и с разными по величине скоростями. Слой, движущийся быстрее, действует с ускоряющей силой на более медленно движущийся соседний слой. Силы внутреннего трения, которые возникают при этом, направлены по касательной к поверхности соприкосновения слоев (рис. 2.1, 2.2).

Величина силы внутреннего трения между соседними слоями пропорциональна их площади и градиенту скорости , то есть справедливо соотношение, полученное экспериментально Ньютоном:

. (2.1)

Величина называется коэффициентом внутреннего трения или динамическим коэффициентом вязкости. В СИ измеряется в .

Входящая в (2.1) величина показывает, как меняется скорость жидкости в пространстве при перемещении точки наблюдения в направлении, перпендикулярном слоям. Понятие градиента скорости иллюстрируется рис. 2.1, 2.2.

Рис. 2.1. Постоянный градиент скорости

 

На рисунке 2.1 показано распределение скоростей слоев жидкости между двумя параллельными пластинами, одна из которых неподвижна, а другая имеет скорость . Подобная ситуация возникает в прослойке смазки между движущимися деталями. В этом случае слои жидкости, непосредственно прилегающие к каждой из пластин, имеют одинаковую с ней скорость. Движущиеся слои частично увлекают за собой соседние. В результате в пространстве между пластинами скорость жидкости меняется по направлению равномерно. Таким образом, здесь:

.

Рис. 2.2. Переменный градиент скорости

 

На рисунке 2.2 показано распределение скоростей жидкости около движущегося в ней вертикально вниз со скоростью шарика.

Предполагается, что скорость мала так, что завихрения в жидкости не образуются. В этом случае жидкость, непосредственно прилегающая к поверхности шарика, имеет скорость . В это движение частично вовлекаются удаленные от шарика слои жидкости. При этом скорость наиболее быстро меняется по направлению вблизи шарика.

Наличие градиента скорости у поверхности тела указывает, что на него действует сила внутреннего трения, зависящая от коэффициента вязкости . Сама величина определяется природой жидкости и обычно существенно зависит от ее температуры.

Сила внутреннего трения и коэффициент вязкости жидкости может быть определен различными методами – по скорости истечения жидкости через калиброванное отверстие, по скорости движения тела в жидкости и т.д. В данной работе для определения используется метод, предложенный Стоксом.

Рассмотрим для примера равномерное движение маленького шарика радиуса в жидкости. Обозначим скорость шарика относительно жидкости через . Распределение скоростей в соседних слоях жидкости, увлекаемых шариком, должно иметь вид, изображенный на рис. 2.2. В непосредственной близости к поверхности шара эта скорость равна , а по мере удаления уменьшается и практически становится равной нулю на некотором расстоянии от поверхности шара.

Очевидно, чем больше радиус шара, тем большая масса жидкости вовлекается им в движение, и должно быть пропорционально радиусу шарика : . Тогда среднее значение градиента скорости на поверхности шара равно:

.

Поверхность шара , и полная сила трения, испытываемая движущимся шаром, равна:

.

Более подробные расчеты показывают, что для шара , окончательно – формула Стокса.

По формуле Стокса можно, например, определить скорости оседания частиц тумана и дыма. Ею можно пользоваться и для решения обратной задачи – измеряя скорость падения шарика в жидкости, можно определить ее вязкость.

Упавший в жидкость шарик движется равноускоренно, но, по мере того, как растет его скорость, будет возрастать и сила сопротивления жидкости до тех пор, пока сила тяжести шарика в жидкости не сравняется с суммой силы сопротивления и силы трения жидкости движению шарика. После этого движение будет происходить с постоянной скоростью .

При движении шарика слой жидкости, граничащий с его поверхностью, прилипает к шарику и движется со скоростью шарика. Ближайшие смежные слои жидкости также приводятся в движение, но получаемая ими скорость тем меньше, чем дальше они находятся от шарика. Таким образом, при вычислении сопротивления среды следует учитывать трение отдельных слоев жидкости друг о друга, а не трение шарика о жидкость.

Если шарик падает в жидкости, простирающейся безгранично по всем направлениям , не оставляя за собой никаких завихрений (малая скорость падения, маленький шарик), то, как показал Стокс, сила сопротивления равна:

, (2.2)

где – коэффициент внутреннего трения жидкости; – скорость шарика; – его радиус.

Кроме силы , на шарик действует сила тяжести и Архимедова сила , равная весу вытесненной шариком жидкости. Для шара:

; , (2.3)

где , – плотность материала шарика и исследуемой жидкости.

Все три силы будут направлены по вертикали: сила тяжести – вниз, подъемная сила и сила сопротивления – вверх. Первое время, после вхождения в жидкость, шарик движется ускоренно. Считая, что к моменту прохождения шариком верхней метки скорость его уже установилась, получим

,

где – время прохождения шариком расстояния между метками, – расстояние между метками.

Движения шарика возрастает, ускорение уменьшается и, наконец, шарик достигнет такой скорости, при которой ускорение становится равным нулю, тогда

. (2.4)

Подставляя в равенство (2.4) значение величин, получим:

. (2.5)

Решая уравнение (2.5) относительно коэффициента внутреннего трения, получаем расчетную формулу:

. (2.6)

Рис. 2.3. Прибор Стокса

 

На рисунке 2.3 представлен прибор, состоящий из широкого стеклянного цилиндра с нанесенными на него двумя кольцевыми горизонтальными метками и ( – расстояние между метками), который наполняется исследуемой жидкостью (касторовое масло, трансформаторное масло, глицерин) так, чтобы уровень жидкости был на 5¸8 см выше верхней метки.



Дата добавления: 2021-01-11; просмотров: 207;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.016 сек.