Алюминиевые бронзы.


Алюминиевые бронзы отличаются высокими механическими, антикоррозийными и антифрикционными свойствами. Они широко применяются. Бывают двойные, например, марки БрА5 (алюминий 5%) и многокомпонентные с присадками Fe, Mn, Ni, марки БрАЖ9-4; БрАЖМц10-3-1,5; БрАЖН-10-4-4.

В a - твердом растворе может находиться до 9,8% Al. Двойная алюминиевая бронза марки БрА5 отличается высокой прочностью и пластичностью и хорошо поддается как холодной, так и горячей обработке давлением.

Многокомпонентные сплавы прочнее и технологичнее, но менее пластичны.

Железо замедляет фазовую перекристаллизацию алюминиевой бронзы за счет образования крупнозернистой и хрупкой g - фазы при охлаждении отливок. Mn входит в твердый раствор и повышает прочность и коррозионные свойства бронзы. Никель улучшает механические свойства бронз при повышенных температурах, увеличивает износостойкость и создает возможность их термической обработки.

По сравнению с оловянистыми бронзами алюминиевые обладают несколько худшими литейными качествами: дают большую усадку, больше склонны к образованию трещин при затрудненной усадке. Неблагоприятные условия плавки и заливки способствуют большому насыщению газами и окислению. У алюминиевых бронз из-за образования оксида алюминия труднее получаются герметичные отливки сложной формы, труднее поддаются пайке.

Но многокомпонентные алюминиевые бронзы широко применяются для отливок и штамповок как качественные заменители оловянистых бронз.

5.Кремнистая бронза: БрКМц 3-1 идет на изготовление пружин.

Бериллиевая: Бр-Б2 после закалки и старения имеет высокие механические свойства. Если после закалки при 8000С бериллиевая бронза имеет σв=50 кГ/мм2 (490 Мн/м2), d ≈ 30% и НВ ~ 100, то после старения в течении 2 часов при 350 оС твердость увеличится до НВ400, предел прочности σв =130¸150 кг/мм2 (1275-1470Мн/м2), но относительное удлинение падает до δ = 1,5÷2 %.

Свинцовые бронзы. Свинец полностью не растворяется в жидкой меди. Эвтектика по составу почти совпадает с чистым свинцом (99,95%Рв), поэтому сплавы после затвердевания состоят из кристаллов меди и включений свинца. Последние располагаются по границам зерен и заполняют междендритные пространства.

Такая структура обеспечивает высокие антифрикционные свойства. Это определяет широкое применение бронзы БрС30 для изготовления вкладышей подшипников скольжения, работающих с большими скоростями и при повышенных давлениях. По сравнению с оловянными подшипниковыми бронзами теплопроводимость бронзы БрС30 в 4 раза больше, поэтому она хорошо отводит теплоту, возникающую при трении.

СПЕЦИАЛЬНЫЕ СПЛАВЫ

1. Нержавеющая сталь.

2. Стали и сплавы для работы при высоких температурах.

3. Стали с высоким электрическим сопротивлением.

4. Стали с особым тепловым расширением.

5. Магнитные стали и сплавы.

6. Титан и его сплавы.

Развитие ядерной, нефтяной и химической промышленности вызвало бурный рост производства сплавов с особыми физическими и химическими свойствами.

Основным требованием, предъявленным к специальным сплавам, является обеспечение определенного уровня физических свойств.

В зависимости от назначения, стали и сплавы с особыми физическими и химическими свойствами можно разделить на следующие 5 групп:

1. Нержавеющие стали с высоким сопротивлением коррозии и действию кислот.

2. Стали и сплавы с высоким электрическим сопротивлением.

3. Стали и сплавы для работы при высоких температурах.

4. Стали с особым тепловым расширением.

5. Магнитные стали и сплавы.

Механические свойства этих сталей и сплавов чаще имеют второстепенное значение, но многие из них должны иметь химических состав высокой точности и строго соблюдаемую технологию производства.

Сталь с высоким сопротивлением коррозии, т.е. по отношению к химическому или электрохимическому разрушению металла вследствие взаимодействия с внешней средой, называется нержавеющей.

Высокое сопротивление коррозии нержавеющей стали объясняется очень большим содержанием в ней хрома. Оксиды хрома (FeCr)2О3 образуют на ее поверхности очень тонкую, но достаточно прочную и непроницаемую (благодаря структурному соответствию с основным металлом) защитную пленку.

При нарушении целостности этой защитной пленки коррозионная стойкость нержавеющей стали снижается (например, окалина, царапины и риски после механической обработки, неметаллические включения).

Нержавеющие стали разделяются в основном на 2 типа: мартенситные (хромистые) и аустенитные (хромо-никелевые или хромо-марганцевые), например, состав коррозионно-стойких сталей по ГОСТ 5632-61 таков: мартенситно-ферритная сталь марки 1Х13 содержит 0,09-0,015% С, 12,0-14,0Cr.

Мартенситная сталь 2Х13 содержит 0,16-0,24% С, 12-14 Cr, аустенитная сталь Х18Н9Т содержит менее 0,12С, 17-19Cr, 8,0-9,5 Ni, (С-0,02)х5-0,7Ti.

Ферритная сталь ОХ17Т содержит менее 0,08 С, 16-18 Cr, 5С-0,8 Ti. По назначению эти стали разделяются на конструкционные и инструментальные.

Конструкционные низкоуглеродистые стали, 1Х13 и 2Х13 должны содержать не менее 12% хрома. Термическая обработка деталей из сталей 1Х13 и 2Х13 заключается в закалке их при 10000С в масле и отпуске при 600-7000С с целью получения сорбитной структуры. Такие стали отличаются хорошей ковкостью и вязкостью, из них изготавливаются турбинные лопатки, детали для холодильного оборудования и т.д. Сталь 2Х13, а иногда и сталь 3Х13 применяется для деталей, работающих при высоких напряжениях.

Инструментальные хромистые нержавеющие стали 3Х13 и 4Х13 применяются для изготовления ножей, хирургического инструмента, пружин.

Режущий инструмент из этих сталей закаливают при 1050 оС в масле и отпускают при 200-280 оС до HRC 48-56. Структура стали после термической обработки состоит из отпущенного мартенсита с незначительным количеством карбидов. Сталь с такой структурой принадлежит к мартенситному классу и хорошо сопротивляется коррозии.

Низкая теплопроводимость сталей с высоким содержанием хрома требует осторожного нагрева их и ступенчатой закалки. Добавка свыше 8% никеля в хромистую сталь Х18Н9 и 1Х18Н9Т позволяет получить после закалки с 11500С в воде аустенитную структуру. Высокая температура нагрева необходима для растворения карбидов и получения однородного аустенита. Подобная закалка создает у стали повышенную, по сравнению с хромистой нержавеющей сталью, коррозионную стойкость, вязкость и прочность при повышенных температурах. Аустенитные стали технологичны, хорошо поддаются холодной прокатке, штамповке, волочению, хорошо свариваются.

Хромо-никелевые стали устойчивы в отношении HNO3, на холоду, и к H2SO4, а в соляной – на холоду и в малых концентрациях.



Дата добавления: 2019-05-21; просмотров: 573;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.009 сек.