Эволюционная химия и ее основные проблемы
Под эволюционными проблемами в химии понимают процессы самопроизвольного (без участия человека) синтеза новых химических соединений, являющихся более сложными и высокоорганизованными продуктами по сравнению с исходными веществами. Поэтому эволюционную химию заслуженно считают предбиологией, наукой о самоорганизации и саморазвитии химических систем.
До последней трети XX в. об эволюционной химии ничего не было известно. В отличие от биологов, которые вынуждены были использовать эволюционную теорию Дарвина для объяснения происхождения многочисленных видов растений и животных, химиков вопрос о происхождении вещества не волновал, потому что получение любого нового химического соединения всегда было делом рук и разума человека. Молекулы новых химических соединений конструировались по законам структурной химии из атомов и атомных групп, как здание из кирпичей. Живые же организмы из блоков собрать было нельзя. Но изучение и освоение опыта живой природы было давней мечтой ученых.
Первые шаги на этом пути были сделаны еще И. Берцелиусом, который установил, что в основе функционирования живого организма лежит биокатализ. Затем исследования в этом направлении велись немецким ученым Ю. Либихом, французом П. Бертло и, наконец, Н.Н. Семеновым, что способствовало укреплению связи химии с биологией.
Постепенное развитие науки XIX века, приведшее к раскрытию структуры атома и детальному познанию строения и состава клетки, открыло перед химиками и биологами практические возможности совместной работы над химическими проблемами учения о клетке. На повестке дня стояло изучение характера химических процессов в живых тканях, обусловленности биологических функций химическими реакциями.
Действительно, если посмотреть на обмен веществ в организме с точки зрения химии, то можно увидеть совокупность большого числа сравнительно простых и однообразных химических реакций, которые сочетаются между собой во времени, протекают не случайно, а в строгой взаимопоследовательности, в результате чего образуются длинные цепи реакций. И этот порядок закономерно направлен к постоянному самосохранению и самовоспроизведению всей живой системы в целом в данных условиях окружающей среды. Так что такие специфические свойства живого, как рост, размножение, подвижность, возбудимость, способность реагировать на изменения внешней среды, связны с определенными комплексами химических превращений.
Поэтому химии среди наук, изучающих жизнь, принадлежит ведущая роль. Именно химией была выявлена важнейшая роль хлорофилла как химической основы фотосинтеза, гемоглобина – как основы процесса дыхания, установлена химическая природа передачи нервного возбуждения, определена структура нуклеиновых кислот и т.д. Но главное заключалось в том, что объективно в самой основе биологических процессов, функций живого лежат химические механизмы. Все функции и процессы, происходящие в живом организме, оказывается возможным изложить на языке химии, в виде конкретных химических реакций.
Конечно, было бы неверным сводить явления жизни только к химическим процессам. Это было бы грубым механистическим упрощением. Даже сама химия подчеркивает специфичность химических процессов в живых системах, показывает их отличия от того, что происходит в неживых системах. Специфичность и одновременно взаимосвязь химической и биологической форм движения материи подчеркиваются и другими науками, возникшими на границе биологии, химии и физики. Среди них биохимия – наука об обмене веществ и химических процессах в живых организмах; биоорганическая химия – наука о строении, функциях и путях синтеза соединений, составляющих живые организмы; физико-химическая биология – наука о функционировании сложных систем, передаче информации и регулировании биологических процессов на молекулярном уровне; а также биофизика, биофизическая химия и радиационная биология.
В рамках перечисленных наук были определены химические продукты клеточного метаболизма (обмена веществ); установлены циклы биосинтеза этих продуктов и реализован их искусственный синтез; открыты материальные основы регулятивного и наследственного молекулярного механизма, а также выяснено значение химических процессов в энергетических процессах клетки и живых организмов в целом.
Сейчас для химии особенно важным становится применение биологических принципов, в которых сконцентрирован опыт приспособления живых организмов к условиям Земли в течение многих миллионов лет, опыт создания наиболее совершенных механизмов и процессов.
Как было понято учеными еще в XIX в., основой исключительной эффективности биологических процессов является биокатализ. Поэтому химики ставят своей целью создать новую химию, основанную на каталитическом опыте живой природы. Они стремятся к новым принципам управления химическими процессами, в которых будет применяться синтез себе подобных молекул, по принципу ферментов будут созданы катализаторы с таким разнообразием качеств, которые далеко превзойдут существующие в нашей промышленности до сих пор.
Несмотря на то, что ферменты обладают общими свойствами, присущими всем катализаторам, тем не менее, они не тождественны последним, поскольку функционируют в рамках живых систем. Поэтому все попытки использовать опыт живой природы для ускорения химических процессов в неорганическом мире сталкиваются с серьезными ограничениями. Пока речь может идти только о моделировании некоторых функций ферментов и использовании этих моделей для теоретического анализа деятельности живых систем. Также возможно частичное практическое применение выделенных ферментов для ускорения некоторых химических реакций. Для этого нужно изучить весь каталитический опыт живой природы, в том числе и опыт формирования самого фермента, клетки и даже организма. На этой основе и возникла эволюционная химия как новая наука, пролагающая пути принципиально новой химической технологии, способной стать аналогом живых систем.
Таким образом, возникновению эволюционной химии способствовали исследования в области моделирования биокатализаторов – ферментов. Для освоения опыта живой природы и реализации полученных знаний в промышленности химики наметили ряд перспективных путей.
Во-первых, химики ведут исследования в области металло-комплексного катализа, который обогащается приемами, используемыми живыми организмами в реакциях с участием ферментов.
Во-вторых, ученые пытаются моделировать биокатализаторы. Уже удалось создать модели многих ферментов, которые извлекаются из живой клетки и используются в химических реакциях. Но проблема осложняется тем, что ферменты, устойчивые внутри живой клетки, вне ее быстро разрушаются.
В-третьих, развивается химия иммобилизованных систем. При этом ферменты, выделенные из живого организма, закрепляются на твердой поверхности путем адсорбции. Пионером в этой области выступил русский химик И.В. Березин. Благодаря его исследованиям биокатализаторы стали стабильными, устойчивыми в химических реакциях, появилась возможность их многократного использования.
В-четвертых, глобальной целью современной химии является решение самой широкой задачи – освоение и использование всего опыта живой природы. Это позволит химикам создать полные аналоги живых систем, в которых будут синтезироваться самые разнообразные вещества. Таким образом, будут созданы принципиально новые химические технологии.
Зарождение эволюционной химии произошло в 1960-х годах, когда были открыты случаи самосовершенствования катализаторов в ходе реакции, тогда как обычно в процессе работы они дезактивировались, ухудшались и выбрасывались. Так химики обратили внимание на процессы самоорганизации в химических системах, на существование в природе химических систем разной степени сложности, а также на процесс перехода от химических систем к биологическим, подняв тем самым химию на качественно новый, четвертый уровень.
Также было отмечено, что ведущую роль на предбиологической стадии эволюции играл катализ. Роль каталитических процессов усиливалась по мере усложнения состава и структуры химических систем. Именно на этом основании некоторые ученые напрямую стали связывать химическую эволюцию с самоорганизацией и саморазвитием каталитических систем. Иными словами, такая эволюция если не целиком, то в значительной мере связана с процессами самоорганизации каталитических систем.
Изучение процессов самоорганизации в химии привело к формированию двух подходов к анализу предбиологических систем: субстратного и функционального.
Дата добавления: 2022-04-12; просмотров: 241;