Оценка параметров регрессионного уравнения


Дня оценки параметров регрессионного уравнения наиболее часто используют метод наименьших квадратов (МНК).

Метод наименьших квадратовдает оценки, имеющие наименьшую дисперсию в классе всех линейных оценок, если выполняются предпосылки нормальной линейной регрессионной модели.

МНК минимизирует сумму квадратов отклонения наблюдаемых значений от модельных значений .

Согласно принципу метода наименьших квадратов, оценки и находятся путем минимизации суммы квадратов

по всем возможным значениям и при заданных (наблюдаемых) значениях .

В результате применения МНК получаем формулы для вычисления параметров модели парной регрессии.

 

(3)

 

Такое решение может существовать только при выполнении условия

что равносильно отличию от нуля определителя системы нормальных уравнений. Действительно, этот определитель равен

Последнее условие называется условием идентифицируемости модели наблюдений , и означает, что не все значения совпадают между собой. При нарушении этого условия все точки , лежат на одной вертикальной прямой

Оценки и называют оценками наименьших квадратов. Обратим внимание на полученное выражение для параметра . В это выражение входят суммы квадратов, участвовавшие ранее в определении выборочной дисперсии

и выборочной ковариации так что, в этих терминах параметр можно получить следующим образом:

 

 

= = =

=

 

 



Дата добавления: 2016-06-15; просмотров: 1235;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.006 сек.