Аппроксимирование экспериментальных данных.
При интерполировании функций мы использовали условие равенства значений интерполяционного многочлена и данной функции в известных точках – узлах интерполяции. Это предъявляет высокие требования к точности данных значений функции. В случае обработки опытных данных, полученных в результате наблюдений или измерений, нужно иметь в виду ошибки этих данных. Они могут быть вызваны несовершенством измерительного прибора, субъективными причинами, различными случайными факторами и т. д. Ошибки экспериментальных данных можно условно разбить на три категории по их происхождению и величине: систематические, случайные и грубые.
Систематические ошибки обычно дают отклонение в одну сторону от истинного значения измеряемой величины. Они могут быть постоянными или закономерно изменяться при повторении опыта, и их причина и характер известны. Систематические ошибки могут быть вызваны условиями эксперимента (влажностью, температурой среды и др.), дефектом измерительного прибора, его плохой регулировкой (например, смещением указательной стрелки от нулевого положения) и т. д. Эти ошибки можно устранить наладкой аппаратуры или введением соответствующих поправок.
Случайные ошибки определяются большим числом факторов, которые не могут быть устранены либо достаточно точно учтены при измерениях или обработке результатов. Они имеют случайный (несистематический) характер, дают отклонения от средней величины в ту или другую стороны при повторении измерений и не могут быть устранены в эксперименте, как бы тщательно он ни проводился. С вероятностной точки зрения математическое ожидание случайной ошибки равно нулю. Статистическая обработка экспериментальных данных позволяет определить величину случайной ошибки и довести ее до некоторого приемлемого значения повторением измерений достаточное число раз.
Грубые ошибки явно искажают результат измерения; они чрезмерно большие и обычно пропадают при повторении опыта. Грубые ошибки существенно выходят за пределы случайной ошибки, полученной при статистической обработке. Измерения с такими ошибками отбрасываются и в расчет при окончательной обработке результатов измерений не принимаются.
Таким образом, в экспериментальных данных всегда имеются случайный ошибки. Они, вообще говоря, могут быть уменьшены до сколь угодно малой величины путем многократного повторения опыта. Однако это не всегда целесообразно, поскольку могут потребоваться большие материальные или временные ресурсы. Значительно дешевле и быстрее можно в ряде случаев получить уточненные данные хорошей математической обработкой имеющихся результатов измерений.
В частности, с помощью статистической обработки результатов измерений можно найти закон распределения ошибок измерений, наиболее вероятный диапазон изменения искомой величины (доверительный интервал) и другие параметры.
Дата добавления: 2019-12-09; просмотров: 478;