Оставить комментарий процессоров


Архитектура процессора (общие вопросы и строение )

06/03/2015Архитектура процессоровpulchrum

В первую очередь-что нам говорит Википедия о Пентиум 3?
Intel Pentium III (в русской разговорной речи — Интел Пентиум три) — x86-совместимый микропроцессор архитектуры Intel P6, анонсированный 26 февраля 1999 года. Ядро Pentium III представляет собой модифицированное ядро Deschutes (которое использовалось в процессорах Pentium II). По сравнению с предшественником расширен набор команд (добавлен набор инструкций SSE) и оптимизирована работа с памятью. Это позволило повысить производительность как в новых приложениях, использующих расширения SSE, так и в существующих (за счёт возросшей скорости работы с памятью). Также был введён 64-битный серийный номер, уникальный для каждого процессора.

С Этим все просто, поехали дальше по тесту.

Вопрос: Архитектура процессора — что это?
Ответ: Термин «архитектура процессора» в настоящее время не имеет однозначного толкования. С точки зрения программистов, под архитектурой процессора подразумевается его способность исполнять определенный набор машинных кодов. Большинство современных десктопных CPU относятся к семейству x86, или Intel-совместимых процессоров архитектуры IA32 (архитектура 32-битных процессоров Intel). Ее основа была заложена компанией Intel в процессоре i80386, однако в последующих поколениях процессоров она была дополнена и расширена как самой Intel (введены новые наборы команд MMX, SSE, SSE2 и SSE3), так и сторонними производителями (наборы команд EMMX, 3DNow! и Extended 3DNow!, разработанные компанией AMD). Однако разработчики компьютерного железа вкладывают в понятие «архитектура процессора» (иногда, чтобы окончательно не запутаться, используется термин «микроархитектура») несколько иной смысл. С их точки зрения, архитектура процессора отражает основные принципы внутренней организации конкретных семейств процессоров. Например, архитектура процессоров Intel Pentium обозначалась как Р5, процессоров Pentium II и Pentium III — Р6, а популярные в недавнем прошлом Pentium 4 относились к архитектуре NetBurst. После того, как компания Intel закрыла архитектуру Р5 для сторонних производителей, ее основной конкурент — компания AMD была вынуждена разработать собственную архитектуру — К7 для процессоров Athlon и Athlon XP, и К8 для Athlon 64.

Вопрос: Какие процессоры лучше, 64-битные или 32-битные? И почему?
Ответ: Достаточно удачное 64-битное расширение классической 32-битной архитектуры IA32 было предложено в 2002 году компанией AMD (первоначально называлось x86-64, сейчас — AMD64) в процессорах семейства К8. Спустя некоторое время компанией Intel было предложено собственное обозначение — EM64T (Extended Memory 64-bit Technology). Но, независимо от названия, суть новой архитектуры одна и та же: разрядность основных внутренних регистров 64-битных процессоров удвоилась (с 32 до 64 бит), а 32-битные команды x86-кода получили 64-битные аналоги. Кроме того, за счет расширения разрядности шины адресов объем адресуемой процессором памяти существенно увеличился.

И… все. Так что те, кто ожидает от 64-битных CPU сколь-нибудь существенного прироста производительности, будут разочарованы — их производительность в подавляющем большинстве современных приложений (которые в массе своей заточены под IA32 и вряд ли в обозримом будущем будут перекомпилированы под AMD64/EM64T) практически та же, что и у старых добрых 32-битных процессоров. Весь потенциал 64-битной архитектуры может раскрыться лишь в отдаленном будущем, когда в массовых количествах появятся (а может, и не появятся) приложения, оптимизированные под новую архитектуру. В любом случае, наиболее эффективен переход на 64-бита будет для программ, работающих с базами данных, программ класса CAD/CAE, а также программ для работы с цифровым контентом.

Вопрос: Что такое процессорное ядро?
Ответ: В рамках одной и той же архитектуры различные процессоры могут достаточно сильно отличаться друг от друга. И различия эти воплощаются в разнообразных процессорных ядрах, обладающих определенным набором строго обусловленных характеристик. Чаще всего эти отличия воплощаются в различных частотах системной шины (FSB), размерах кэша второго уровня, поддержке тех или иных новых систем команд или технологических процессах, по которым изготавливаются процессоры. Нередко смена ядра в одном и том же семействе процессоров влечет за собой замену процессорного разъема, из чего вытекают вопросы дальнейшей совместимости материнских плат. Однако в процессе совершенствования ядра, производителям приходится вносить в него незначительные изменения, которые не могут претендовать на «имя собственное». Такие изменения называются ревизиями ядра и, чаще всего, обозначаются цифробуквенными комбинациями. Однако в новых ревизиях одного и того же ядра могут встречаться достаточно заметные нововведения. Так, компания Intel ввела поддержку 64-битной архитектуры EM64T в отдельные процессоры семейства Pentium 4 именно в процессе изменения ревизии.

Вопрос: В чем заключается преимущество двухъядерных процессоров перед одноядерными?
Ответ: Самым значимым событием 2005 года стало появление двухъядерных процессоров. К этому времени классические одноядерные CPU практически полностью исчерпали резервы роста производительности за счет повышения рабочей частоты. Камнем преткновения стало не только слишком высокое тепловыделение процессоров, работающих на высоких частотах, но и проблемы с их стабильностью. Так что экстенсивный путь развития процессоров на ближайшие годы был заказан, и их производителям волей-неволей пришлось осваивать новый, интенсивный путь повышения производительности продукции. Самой расторопной на рынке десктопных CPU, как всегда, оказалась Intel, первой анонсировавшая двухъядерные процессоры Intel Pentium D и Intel Extreme Edition. Впрочем, AMD с Athlon64 X2 отстала от конкурента буквально на считанные дни. Несомненным достоинством двухъядерников первого поколения, к которым относятся вышеназванные процессоры, является их полная совместимость с существующими системными платами (естественно, достаточно современными, на которых придется только обновить BIOS). Второе поколение двухъядерных процессоров, в частности, Intel Core 2 Duo, «требует» специально разработанных для них чипсетов и со старыми материнскими платами не работает.

Не следует забывать, что, на сегодняшний день для работы с двухъядерными процессорами более или менее оптимизировано в основном только профессиональное ПО (включая работу c графикой, аудио- и видео данными), тогда как для офисного или домашнего пользователя второе процессорное ядро иногда приносит пользу, но гораздо чаще является мертвым грузом. Польза от двухъядерных процессоров в этом случае видна невооруженным взглядом только тогда, когда на компьютере запущены какие-либо фоновые задачи (проверка на вирусы, программный файервол и т.п.). Что касается прироста производительности в существующих играх, то он минимальный, хотя уже появились первые игры популярных жанров, полноценно использующие преимущества от использования второго ядра.

Впрочем, если сегодня стоит вопрос выбора процессора для игрового ПК среднего или верхнего ценового диапазона, то, в любом случае, лучше предпочесть двухъядерный, а то и 4-ядерный процессор чуть более высокочастотному одноядерному аналогу, так как рынок неуклонно движется в сторону мультиядерных систем и оптимизированных параллельных вычислений. Такая тенденция будет господствующей в ближайшие годы, так что доля ПО, оптимизированного под несколько ядер, будет неуклонно возрастать, и очень скоро может наступить момент, когда мультиядерность станет насущной необходимостью.

Вопрос: Что такое кэш?
Ответ: Во всех современных процессорах имеется кэш (по-английски — cache) — массив сверхскоростной оперативной памяти, являющейся буфером между контроллером сравнительно медленной системной памяти и процессором. В этом буфере хранятся блоки данных, с которыми CPU работает в текущий момент, благодаря чему существенно уменьшается количество обращений процессора к чрезвычайно медленной (по сравнению со скоростью работы процессора) системной памяти. Тем самым заметно увеличивается общая производительность процессора.

При этом в современных процессорах кэш давно не является единым массивом памяти, как раньше, а разделен на несколько уровней. Наиболее быстрый, но относительно небольшой по объему кэш первого уровня (обозначаемый как L1), с которым работает ядро процессора, чаще всего делится на две половины — кэш инструкций и кэш данных. С кэшем L1 взаимодействует кэш второго уровня — L2, который, как правило, гораздо больше по объему и является смешанным, без разделения на кэш команд и кэш данных. Некоторые десктопные процессоры, по примеру серверных процессоров, также порой обзаводятся кэшем третьего уровня L3. Кэш L3 обычно еще больше по размеру, хотя и несколько медленнее, чем L2 (за счет того, что шина между L2 и L3 более узкая, чем шина между L1 и L2), однако его скорость, в любом случае, несоизмеримо выше, чем скорость системной памяти.

Кэш бывает двух типов: эксклюзивный и не эксклюзивный кэш. В первом случае информация в кэшах всех уровней четко разграничена — в каждом из них содержится исключительно оригинальная, тогда как в случае не эксклюзивного кэша информация может дублироваться на всех уровнях кэширования. Сегодня трудно сказать, какая из этих двух схем более правильная — и в той, и в другой имеются как минусы, так и плюсы. Эксклюзивная схема кэширования используется в процессорах AMD, тогда как не эксклюзивная — в процессорах Intel.

Вопрос: Что такое процессорная шина?
Ответ: Процессорная (иначе — системная) шина, которую чаще всего называют FSB (Front Side Bus), представляет собой совокупность сигнальных линий, объединенных по своему назначению (данные, адреса, управление), которые имеют определенные электрические характеристики и протоколы передачи информации. Таким образом, FSB выступает в качестве магистрального канала между процессором (или процессорами) и всеми остальными устройствами в компьютере: памятью, видеокартой, жестким диском и так далее. Непосредственно к системной шине подключен только CPU, остальные устройства подсоединяются к ней через специальные контроллеры, сосредоточенные в основном в северном мосте набора системной логики (чипсета) материнской платы. Хотя могут быть и исключения — так, в процессорах AMD семейства К8 контроллер памяти интегрирован непосредственно в процессор, обеспечивая, тем самым, гораздо более эффективный интерфейс память-CPU, чем решения от Intel, сохраняющие верность классическим канонам организации внешнего интерфейса процессора. Основные параметры FSB некоторых процессоров приведены в табл

Процессор частота FSB, МГц Тип FSB Теоретическая пропускная способность FSB, Мб/с
Intel Pentium III 100/133 AGTL+ 800/1066
Intel Pentium 4 100/133/200 QPB 3200/4266/6400
Intel Pentium D 133/200 QPB 4266/6400
Intel Pentium 4 EE 200/266 QPB 6400/8533
Intel Core 133/166 QPB 4266/5333
Intel Core 2 200/266 QPB 6400/8533
AMD Athlon 100/133 EV6 1600/2133
AMD Athlon XP 133/166/200 EV6 2133/2666/3200
AMD Sempron HyperTransport <6400
AMD Athlon 64 800/1000 HyperTransport 6400/8000

Процессоры компании Intel используют системную шину QPB (Quad Pumped Bus), передающую данные четыре раза за такт, тогда как системная шина EV6 процессоров AMD Athlon и Athlon XP передает данные два раза за такт (Double Data Rate). В архитектуре AMD64, используемой компанией AMD в процессорах линеек Athlon 64/FX/Opteron, применен новый подход к организации интерфейса CPU — здесь вместо процессорной шины FSB и для сообщения с другими процессорами используются: высокоскоростная последовательная (пакетная) шина HyperTransport, построенная по схеме Peer-to-Peer (точка-точка), обеспечивающая высокую скорость обмена данными при сравнительно низкой латентности.

И наконец-то конкретика!


Процессы первого поколения этого семейства (Intel Pentium III 450 и Intel Pentium III 500) были анонсированы Intel в конце февраля 1999 года и имели следующие характеристики:

· технология производства: 0,25 мкм;

· ядро процессора: Katmai, разработанное на основе Deschutes (поздняя версия ядра процессоров Intel Pentium II) с добавленным SSE-конвейером для обработки 70 новых SSE-инструкций;

· L1-кэш: объем — 32 Кбайт (16 Кбайт для данных плюс 16 Кбайт для инструкций);

· L2-кэш: объем — 512 Кбайт, тактовая частота — половина тактовой частоты ядра, внешний (не интегрирован на одном кристалле с процессором, а выполнен на отдельных микросхемах, которые расположены на той же печатной плате, что и микросхема процессора), поддерживает ECC-механизм обнаружения и коррекции ошибок при обмене данными с ядром процессора; в терминологии Intel такой L2-кэш называют Discrete Cache;

· частота системной шины: 100 МГц, поддерживается ECC;

· напряжение питания ядра процессора: 2,0 В;

· многопроцессорность: поддерживается до двух процессоров на одной системной шине;

· идентификация: каждый процессор имеет уникальный 96-битный серийный номер, «прошитый» в нем во время изготовления, который может быть считан программными средствами;

· в случае нежелания пользователя «разглашать» серийный номер своего процессора возможность считывания его серийного номера может быть заблокирована на уровне BIOS с помощью программы настройки BIOS материнской платы или же утилиты Processor Serial Number Control Utility физический разъем: Slot 1;

· исполнение: S.E.C.C.- или S.E.C.C.2-картридж.

 



Дата добавления: 2016-06-05; просмотров: 1522;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.015 сек.