СОЕДИНЕНИЯ КИСЛОРОДА


Оксиды

Получение.

1. Взаимодействие простых веществ с кислородом (окисление элементов в свободном виде), например, при их горении в атмосфере кис­лорода или на воздухе.

2. Прокаливание гидроксидов или гидратированных оксидов: Сu(ОН)2 = СuО + Н2О.

3. Нагревание солей, разлагающихся с образованием летучих кислотных оксидов (карбонатов, сульфатов, сульфитов, нитратов и др.): СuСО3 = СuО + СO2.

Свойства. Оксиды многих неметаллов, за исключением СО, NO, N2О, со­ответствуют кислотам. Они часто получаются в результате термического раз­ложения кислоты или образуют ее при взаимодействии с водой (кислотные оксиды): SO3 + H2O = Н24.

Оксиды металлов в высоких степенях окисления (+5) — (+7) также относятся к кислотным оксидам. Например, триоксид хрома при взаимодей­ствии с водой дает хромовую кислоту:

СrО3 + Н2О = Н2СrО4

Оксиды металлов в низких степенях окисления от (+1) до (+4) яв­ляются основными либо амфотерными оксидами, им соответствуют основные или амфотерные гидроксиды, например:

СаО + Н2О = Са(ОН)2; А12О3 + 3Н2О = 2А1(ОН)3.

Большинство оксидов металлов в обычных условиях не реагируют с во­дой, и поэтому отвечающие им гидроксиды получают косвенным путем, на­пример через соли:

СuО + 2НС1 = СuС12 + Н2О, СuС12 + 2NaОН = Сu(ОН)2 + 2NаС1.

Основные оксиды при взаимодействии с типичными кислотными оксидами и кислотами образуют соответствующие соли; так же протекают реакции между кислотными оксидами и типичными основными оксидами или осно­ваниями. Амфотерные оксиды и с кислотными, и с основными оксидами образуют соли.

Гидроксиды

Гидроксиды обязательно содержат группу —О—Н. В зависимости от того, связана ли гидроксигруппа с атомами металла или неметалла, гидроксиды будут обладать основными, кислотными или амфотерными свойствами.

Большинство гидроксидов металлов мало растворимо в воде и осаж­дается при их получении из водного раствора: СuSO4 + 2NaОН = Сu(ОH)2(т) + Nа24.

Обычно при комнатной температуре гидроксиды выпадают в виде сли­зистых, хлопьевидных, часто окрашенных осадков, в которых содержание воды выше, чем это следует из стехиометрической формулы, поэтому им приписывается состав полигидрата оксида. Стехиометрический состав может достигаться при нагревании полигидратированного оксида, но обычно обра­зуются частично обезвоженные гидроксиды-оксиды типа Аl(ОН) или Тl(ОН)2.

Окраска малорастворимых гидроксидов:

белая: А1(ОН)3, АlO(ОН), Zn(ОН)2, Сd(ОН)2, Рb(ОН)2, Sn(ОН)2, Вi(ОН)3, ВЮ(ОН), Мg(ОН)2;

светло-зеленая: Fе(ОН)2 [на воздухе этот гидроксид ста­новится коричневым;

светло-коричневая: Мn(ОН)2;

ярко-зеленая: Ni(ОН)2;

серо-голубая: Сr(ОН)3;

голубая: Сu(ОН)2;

розовая: Со(ОН)2;

Гидроксиды серебра (I) и ртути (II) очень неустойчивы и при комнатной температуре спонтанно распадаются на оксиды и воду.

Пероксиды

Пероксиды обязательно содержат кислородную цепь —О—О— (пероксогруппа), их можно рассматривать как производные пероксида водорода Н—О—О—Н. Важнейшими представителями являются пероксид натрия Nа2О2 и пероксид бария ВаО2: они содержат пероксид-ионы О*". Если в составе оксида нет цепи —О—О—, то такое соединение нельзя называть пероксидом, например РbО2 (структурная формула О= Рb=О) представляет собой оксид свинца (IV). Органические пероксиды широко используются как катализаторы полимеризации.

Надпероксиды металлов содержат цепочечный ион О2-; например, при сго­рании калия образуется надпероксид кадия КО2.

СЕРА

Элемент сера S в виде выделений вулканических источников из­вестен со II в. до н. э.

Распространение в природе. Сера встречается в свободном виде (само­родная сера) и в виде сульфидов и сульфатов образует много минералов. Входит в состав природного угля, нефти и белковых тел (особенно много серы содержится в кератине волос, перьев и шерсти).

Минералы: сульфиды (колчеданы — светлые с металлическим блеском; блески — темные с металлическим отливом; обманки — темные без металлического бле­ска или чаще светлые, прозрачные), пирит, серный колчедан, железный колчедан FeS2, молибденит, молибденовый блеск МоS2, халькопирит, медный колчедан FеСuS2, аргентит, серебряный блеск Аg2S, стибнит, сурьмяный блеск, серая сурьмяная руда Sb2S3, арсенопирит, миспикель, мышьяковый колчедан FеАsS, сфалерит, цинковая обманка ZnS, киноварь НgS, реальгар Аs4S4 галенит, свинцовый блеск РbS, халькозин, медный блеск Сu2S.

Физиологическое действие. Сера — жизненно важный элемент, в связанном виде она содержится во всех высших организмах (составная часть белков).

Для людей свободная сера не ядовита, небольшие количества ее дей­ствуют как слабительное, мелкодисперсная сера раздражает кожу (на этом основано применение лекарственных серосодержащих мазей).

Получение.

1. Выплавление самородной серы из природных залежей, на­пример с помощью водяного пара, и очистка сырой серы перегонкой. При резком охлаждении пара серы получают сублимированную серу в виде мел­кого порошка («серный цвет»).

2. Выделение серы при десульфурации продуктов газификации угля (во­дяной, воздушный и светильный газы), например, под действием воздуха и катализатора — активного угля:

2S + О2 = 2Н2O +2S.

3. Выделение серы при неполном сгорании сероводорода (уравнение см. выше), при подкислении раствора тиосульфата натрия: Na2S2O3 + 2НС1 = 2NaС1 + SО2 + Н2О + S, и при перегонке раствора полисульфида аммония: (NH4)2S3.

Аллотропные модификации. Сера в свободном виде состоит из молекул различной длины (S¥, S12, S8, S6, S2 и др.), и эти молекулы могут упоря­дочиваться различными способами, поэтому существует несколько модифи­каций серы. При комнатной температуре сера находится в виде a-серы (ромбическая модификация), которая представляет собой желтые хрупкие кристаллы без цвета и запаха, не растворимые в воде, но легко растворимые в сероуглероде. Выше 96 °С происходит медленное превращение a-серы в b-серу (моноклинная модификация), которая представляет собой почти белые кристаллические пластинки. Температуры плавления a- и b-серы равны соответственно 118 и 119°С. При плавлении образуется желтая низковязкая l-сера, которая состоит, как и обе модификации твердой серы, из цикличе­ских молекул S8. При дальнейшем нагревании циклы S8 переформировы­ваются в цепи разной длины. Модификация такого строения называется m-серой; это красно-коричневая и очень вязкая жидкость. При повышении температуры окраска становится темно-коричневой и вязкость жидкой серы снова понижается. Жидкая сера кипит при 444,6 °С. При вливании расплав­ленной серы в воду происходит переохлаждение расплава и образование желто-коричневой, резиноподобной, режущейся ножом пластической серы (смесь l- и m-серы), которая на воздухе за несколько минут становится жел­той, мутной и хрупкой.

Химические свойства. При нагревании на воздухе сера сгорает голубым пламенем до диоксида серы SО2 (с примесью триоксида серы SO3). При высоких температурах реагирует с металлами, давая соответствующие суль­фиды, и с водородом (и парафином), образуя сероводород Н2S. Сера рас­творяется в растворе сульфида аммония с образованием желто-красных полисульфид-ионов, при нагревании серы с раствором сульфита получается соответствующий тиосульфат, а при нагревании с раствором цианида — тиоцианат.

Применение. Сера используется для получения сероуглерода, серной кис­лоты, тиосульфата натрия, сернистых красителей, ультрамаринового синего, при вулканизации каучука, как средство для лечения кожных заболеваний, для защиты растений от мучнистой росы.

Серу вводят в пахотные земли в виде различных сульфатсодержащих удобрений (сульфат аммония, суперфосфат).



Дата добавления: 2021-09-07; просмотров: 133;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.009 сек.