Кинетическая и потенциальная энергии.


Кинетическая энергия тела является мерой его механического движения и определяется работой, которую необходимо совершить, чтобы вызвать данное движение тела. Если сила F действует на покоящееся тело и вызывает его движение со скоростью v, то она совершает работу, а энергия движущегося тела возрастает на величину затраченной работы. Таким образом, работа силы F на пути, который тело прошло за время возрастания скорости от 0 до v, идет на увеличение кинетической энергии тела, т. е. dA = dT.

Используя скалярную запись второго закона Ньютона F =mdv/dt и умножая обе части равенства на перемещение ds, получим

Так как

И

Таким образом, для тела массой т, движущегося со скоростью v, кинетическая энергия

(12.1)

Из формулы (12.1) видно, что кинетическая энергия зависит только от массы и скорости тела, т. е. кинетическая энергия системы есть функция состояния ее движения.

При выводе формулы (12.1) предполагалось, что движение рассматривается в инерциальной системе отсчета, так как иначе нельзя было бы использовать закон Ньютона. В разных инерциальных системах отсчета, движущихся друг относительно друга, скорость тела, а, следовательно, и его кинетическая энергия будут неодинаковы. Таким образом, кинетическая энергия зависит от выбора системы отсчета.

Потенциальная энергия - часть общей механической энергии системы, определяемая взаимным расположением тел и характером сил взаимодействия между ними.

Пусть взаимодействие тел осуществляется посредством силовых полей (например, поля упругих сил, поля гравитационных сил), характеризующихся тем, что работа, совершаемая действующими силами при перемещении тела из одного
положения в другое, не зависит от того, по какой траектории это перемещение произошло, а зависит только от начального и конечного положений. Такие поля называются потенциальными, а силы, действующие в них,— консервативными. Если же работа, совершаемая силой, зависит от траектории перемещения тела из одной точки в другую, то такие силы называются диссипативными; примером их являются силы трения.

Тело, находясь в потенциальном поле сил, обладает потенциальной энергией П, которая определяется с точностью до некоторой произвольной постоянной. Это, однако, не отражается на физических законах, так как в них входит или разность потенциальных энергий в двух положениях тела, или производная П по координатам. Поэтому потенциальную энергию какого-то определенного положения тела считают равной нулю (выбирают нулевой уровень отсчета), а энергию других положений отсчитывают относительно нулевого уровня.

Потенциальная энергия тела обычно определяется работой, которую совершили бы действующие на него внешние силы, преодолевающие консервативные силы взаимодействия, перемещая его из конечного состояния, где потенциальная энергия равна нулю, в данное положение. Работа консервативных сил, приложенных к телу, равна изменению потенциальной энергии этого тела, взятому с обратным знаком, т. е.

, (12.2)

так как работа совершается за счет убыли потенциальной энергии.

Поскольку работа dA есть скалярное произведение силы F на перемещение dr, то выражение (12.2) можно записать в виде

. (12.3)

Следовательно, если известна функция П(г), то (12.3) полностью определяет силу F по модулю и направлению. В случае консервативных сил

или в векторном виде

, (12.4)

где символом grad П обозначена сумма

(12.5)

где i, j, k— единичные векторы координатных осей. Вектор, определяемый выражением (12.5), называется градиентом скаляра П. Для него наряду с обозначением grad П применяется также обозначение Ñ П. Ñ(«набла») означает символический вектор, называемый оператором Гамильтона или набла-оператором:

(12.6)

Конкретный вид функции П зависит от характера силового поля. Например, потенциальная энергия тела массой m, поднятого на высоту h над поверхностью Земли, равна

, (12.7)

где h — высота, отсчитанная от нулевого уровня, для которого П0 = 0. Выражение (12.7) вытекает непосредственно из того, что потенциальная энергия равна работе силы тяжести: при падении тела с высоты h на поверхность Земли.

Так как начало отсчета выбирается произвольно, то потенциальная энергия может иметь отрицательное значение (кинетическая энергия всегда положительна!). Если принять за нуль потенциальную энергию тела, лежащего на поверхности Земли, то потенциальная энергия тела, находящегося на дне тахты (глубина h'),

.

Найдем потенциальную энергию упругодеформированного тела (пружины). Сила упругости пропорциональна деформации:

,

где k — коэффициент упругости (в случае пружины — жесткость), а знак минус указывает, что сила упругости направлена в сторону, противоположную деформации.

По третьему закону Ньютона, для преодоления силы упругости надо приложить силу

Элементарная работа dA, совершаемая силой F при малой деформации dx, равна

,

а полная работа

идет на увеличение потенциальной энергии пружины.

Если принять, что потенциальная энергия недеформированного тела (при х = 0) равна нулю, то С = 0. Таким образом, потенциальная энергия упругодеформированного тела

Потенциальная энергия системы, подобно кинетической энергии, является функцией состояния системы. Она зависит только от конфигурации системы v ее положения по отношению к внешним телам.

Полная механическая энергия системы — энергия механического движения и взаимодействия:

.



Дата добавления: 2017-06-13; просмотров: 1399;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.01 сек.