Проектирование продольного профиля по соединительным рампам


Обязательным элементом технологической последовательности проектирования развязок движения в разных уровнях является установление положения проектной линии продольного профиля по съездам, осуществляемое после планировочных проработок и аналитического расчета элементов плана.

Многообразие соединительных рамп, различная их конфигурация в плане, наличие высотных ограничений (например, прохождение с отметками не ниже минимальных над трубами, условия выхода на путепроводы и т.д.), необходимость соблюдения условий сопряжения с вертикальными элементами пересекающихся дорог на участках ответвлений съездов и въездов (рис. 33.18), а также выполнение требований действующих нормативов делают задачу проектирования продольного профиля по соединительным рампам весьма непростой. Решение этой задачи является составной частью комплексного проектирования соединительных рамп в пространстве с одновременным решением вертикальной планировки, включая наиболее сложные с точки зрения геометрической интерпретации участки ответвлений и примыканий.

Рис. 33.18. Варианты сопряжения осей съезда и дороги в вертикальной плоскости

Многодельность задачи установления положения проектной линии продольного профиля по соединительным рампам, многовариантный характер проработки конструктивных и плановых решений, необходимость перепроектирования продольного профиля одной из пересекающихся дорог или плана съезда при выявлении невозможности взаимоувязки между вертикальным решением и геометрией плана без нарушения требований технических нормативов делают весьма эффективным и даже необходимым применение компьютерной техники для решения задач данного класса.

Для существенного ускорения расчетов и получения безошибочной и совершенной проектной линии продольного профиля по соединительным рампам в Союздорпроекте разработаны алгоритмы и программы, предназначенные для проектирования простых соединительных рамп выпуклого и вогнутого очертания при небольшой их длине и большом перепаде высот между начальной и конечной точками. Для расчета продольного профиля сложных соединительных рамп большой длины применяют известные программы проектирования продольного профиля автомобильных дорог.

Основные особенности проектирования продольного профиля по соединительным рампам развязок движения, нашедшие отражение в соответствующих компьютерных программах, состоят в следующем:

принят параболический вид вертикальных выпуклых и вогнутых кривых, получивших повсеместное распространение в отечественной и зарубежной практике;

проектная линия построена из сопрягающихся между собой выпуклых и вогнутых вертикальных кривых, а также прямолинейных вставок между ними. Минимальные радиусы вертикальных кривых и допустимые продольные уклоны определяют в соответствии со строительными нормами и правилами. Вертикальные переходные кривые не используют вследствие больших радиусов вертикальных параболических кривых и малой их сдвижки;

на участках переходных кривых в плане от точек расхождения осей съездов с осями внешних полос пересекающихся дорог до кромок расхождения их проезжих частей принят постоянный поперечный уклон дороги, обеспечивающий обязательное понижение проектной линии соединительных рамп в вертикальной плоскости для пересекающихся дорог соответственно на величины Dh1 и Dh1. Несмотря на противоестественное направление выпуклой кривой на нижнем конце съезда (рис. 33.19, схема 2), игнорирование этого условия влечет поднятие внешней кромки съезда и образование гребня на внешней полосе дороги с неоднократным изменением направления поперечного уклона, неблагоприятно сказывающимся на уровнях удобства и безопасности движения, а также затрудняющим водоотвод с проезжей части;

в программах учтено многообразие продольных профилей пересекающихся дорог и условий сопряжения с ними съездов. Возможные случаи сопряжения вертикальных кривых радиусов R с элементами продольных профилей пересекающихся дорог представлены на рис. 33.18. Значительное количество возможных комбинаций сопряжения лишний раз свидетельствует в пользу необходимости использования вычислительной техники при проектировании проектной линии продольного профиля соединительных рамп транспортных развязок;

обеспечена возможность получения множества решений и выбора наилучшего из них в случае, если условия размещения соединительных рамп далеки от» экстремальных. В экстремальных условиях получают единственно возможное решение проектной линии продольного профиля при соблюдении всех требований технических нормативов. При невозможности получения решения проектной линии без нарушения технических норм перепроектируют продольный профиль одной из пересекающихся дорог либо план соединительной рампы;

для удобства построения и наглядности все характерные и пикетажные точки продольного профиля определены в системе координат, где абсцисса X - пикетажное положение точки в направлении пикетажа слева направо и ордината Y - абсолютная геодезическая высота точки, взятая в системе высот профилей пересекающихся дорог;

в результате определения округленных значений радиусов R1 и R2 на участках ответвлений и примыканий съездов находят положение вершин вертикальных кривых, а также координаты и уклоны в точках Р1 и Р2. При этом в зависимости от знака уклона iр в точке Р2 различают две принципиально отличных по технике расчета схемы сопряжения вогнутой кривой R3 с вертикальными кривыми R1 и R2 (рис. 33.19).

Использование вычислительной техники при проектировании проектной линии продольного профиля соединительных рамп развязок не только облегчает и ускоряет производство трудоемких вычислительных работ, обеспечивая экономию трудозатрат при проектировании, но и делает возможным направленный поиск наилучшего решения в части снижения строительной стоимости и повышения транспортно-эксплуатационных качеств развязок движения в разных уровнях.

Рис. 33.19. Схема построения проектной линии продольного профиля на съездах с двумя типами сопряжения вертикальных кривых

Планово-высотное решение соединительных рамп

Пространственное положение соединительной рампы между пересекающимися дорогами зависит от ее геометрии в плане с соответствующими переходными кривыми оптимальной длины, закономерностей изменения поперечного уклона и очертания кромок проезжей части и проектной линии продольного профиля. Планово-высотное положение соединительных рамп определяет совокупность совместно действующих факторов и их рациональное сочетание при условии полной взаимоувязки.

Необходимая длина переходных кривых каждого типа в общем случае может быть определена на основе соотношений, приведенных в разд. 33.2. Однако на участках ответвлений и примыканий соединительных рамп использование предельных значений параметров приводит к длинам, которые недостаточны для разделения кромок проезжих частей дороги и отмыкающей (примыкающей) рампы и тем более - бровок земляного полотна. В этих случаях круговая кривая съезда с максимальным поперечным уклоном оказывается в пределах полосы дороги, что обусловливает при отгоне виража вдоль переходной кривой резкое поднятие внешней кромки с образованием линии перелома в виде гребня. К длинам, не обеспечивающим разделение кромок проезжих частей и бровок земляного полотна, относят минимальные длины переходных кривых, нормируемые действующими строительными нормами и правилами.

Рис. 33.20. Детали участка ответвления съезда:
а - условные обозначения; б - принцип итерационного процесса

Для обеспечения благоприятных условий отгона виража переходную кривую по длине делят на два участка: L1 - от ее начала до сечения разделения кромок; L2 - до начала круговой кривой (рис. 33.20). Длина участка L1 обеспечивает разделение кромок проезжих частей из условия сохранения в его пределах поперечного уклона дороги, а участок L2 обеспечивает отгон виража.

Минимальные длины переходных кривых, обеспечивающие расхождение кромок проезжих частей и разделение бровок, а также возможность последующего отгона виража до максимального поперечного уклона в пределах самостоятельной части рампы, называют оптимальными. Эти длины в каждом конкретном случае определяют путем использования соответствующих прикладных программ пакета либо с помощью разработанных специальных таблиц.

При движении автомобиля по переменному по длине переходной кривой поперечному уклону происходит поворот автомобиля вокруг продольной оси, характеризуемый появлением бокового наклона или крена. Законы изменения поперечного уклона виража представляют в следующем виде:

для переходных кривых из условия V = const

(33.9)

для переходных кривых из условия V ¹ const

где (33.10)

iB - уклон виража в долях единицы;

V - скорость движения автомобиля, м/с;

g - ускорение свободного падения, м/с2;

К = 1/R - кривизна, 1/м;

j2 - коэффициент поперечного сцепления колеса с дорогой;

l - расстояние от начала переходной кривой до расчетного сечения, м;

L - длина переходной кривой, м;

b - продольное ускорение автомобиля, м/с2;

iB1 - поперечный уклон проезжей части в начале виража.

Как видно, формулы (33.9) и (33.10) тесно связывают между собой скорость движения автомобиля, характер изменения кривизны и характер изменения поперечного уклона. Нарушение этой связи неправильным режимом движения обусловливает повышенное использование коэффициента поперечного сцепления j2 и тем самым снижение безопасности движения.

Для расчета геодезических высот вертикальной планировки и получения пространственной поверхности участков отгона виража необходимо, помимо уравнения оси переходной кривой, знать и уравнения кромок, ей параллельных и непараллельных в случае устройства уширения. Учитывая, что процесс разбивки поперечников с целью установления положения точек внутренней и внешней кромок трудоемкий и несовершенный, а при выносе проекта в натуру далеко не безупречный, в Союздорпроекте решена задача аналитического представления разбивочных точек кромок в системе координат оси рампы.

Принципиальным вопросом в аналитическом определении положения кромок является изменение уширения проезжей части по длине переходной кривой. Получивший в настоящее время широкое распространение линейный закон отгона уширения определяет искажение зрительной плавности проезжей части, проявляющееся тем более резко, чем меньше длина переходной кривой и радиус закругления и чем больше уширение. С целью улучшения зрительной плавности проезжей части соединительных рамп пакетом прикладных программ Союздорпроекта предусмотрены следующие способы отгона уширения:

S-образным изменением кромок по длине переходной кривой по закону тригонометрических функций;

S-образным изменением кромок по длине переходной кривой сопряженных обратных параболических кривых;

применением уравнений кромок на участках с переходными кривыми типа клотоиды с уширением в обе стороны пропорционально длине (рис. 33.21, а);

применением уравнений кромок на участке с переходными кривыми типа клотоиды с использованием краевых клотоид (рис. 33.21, б);

получение координат точек кромок в системе координат оси соединительной рампы.

Рис. 33.21. Уширение проезжей части на переходной кривой типа клотоиды:
а - изменение ширины в обе стороны пропорционально длине; б - посредством краевых клотоид

После установления закономерности изменения поперечного уклона по длине переходных кривых различного типа, получения их оптимальных параметров, определения положения внутренних и внешних кромок переходят к высотному решению поверхности дороги и рампы в пределах совмещенного участка с целью обеспечения наиболее благоприятных условий движения и водоотвода с проезжей части. На рис. 33.22 представлены возможные случаи вертикальной планировки на участках ответвлений и примыканий соединительных рамп как при конструктивном решении по схеме 1 (см. рис. 33.2), так и по схеме 2 (см. рис. 33.3).

Рис. 33.22. Схема отгона поперечного уклона на участках ответвлений и примыканий соединительных рамп развязок движения

Решение, предусматривающее сохранение поперечного уклона в пределах внешней полосы дороги (рис. 33.22 а), применяют при наличии межпетлевых участков с последующими переходно-скоростными полосами и интенсивным движением, а также при организации съездов с полос, предназначенных для местного движения.

Согласно решению, представленному на рис. 33.22, б, поперечный уклон дороги сохраняют неизменным по всей ширине совмещенного участка, а его изменение на съезде происходит на оставшейся части длины переходной кривой. Такое решение благоприятствует движению в прямом направлении, но искажает характер изменения поперечного уклона по длине переходной кривой. Применяют при преимущественном движении в прямом направлении.

Решение, представленное на рис. 33.22, в, предусматривает отгон поперечного уклона в соответствии с закономерностью его изменения по длине переходной кривой. Применение его целесообразно при преимущественном движении на съезд.

Для схемы 2 ответвления (см. рис. 33.3) применяют решение, представленное на рис. 33.22, г, дающее возможность беспрепятственного отгона виража с закономерностью, свойственной переходной кривой данного типа по аналогии с рис. 33.22, в, что представляется весьма благоприятным как для поворотных транспортных потоков, так и для потоков, следующих в прямом направлении. Применяют при высокой интенсивности движения в прямом и поворотном направлениях.

В настоящее время пакет прикладных программ Союздопроекта расширен за счет включения новых программ, например, по расчету сложных правоповоротных соединительных рамп по методу сопряжения элементов, по методу трассирования с использованием сплайнов, программ подсчета объемов работ с использованием математических моделей местности и последующим определением строительной стоимости, а также транспортно-эксплуатационных расходов. Разработаны программы по представлению результатов проектирования развязок движения в разных уровнях в виде готовых чертежей на плоттерах и т.д.

 



Дата добавления: 2017-03-12; просмотров: 1798;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.012 сек.