Режим нагрузки синхронного генератора


Режим холостого хода синхронного генератора

Генератор возбужден и вращается с синхронной скоростью n. Магнитное поле возбуждения Фв индуктирует в обмотке якоря симметричную трехфазную ЭДС. Направление этой ЭДС в фазах обмотки якоря определяется по правилу “правой руки” и показано на рис. 3.1: (+) от наблюдателя, (·) к наблюдателю. Следует помнить, что правило “правой руки” справедливо для неподвижного поля, поэтому при определении направления ЭДС индуктор был мысленно заторможен, а проводники якоря вращались в обратном направлении.

Поскольку цепь якоря разомкнута в ней тока нет, и поэтому никаких других электромагнитных процессов в генераторе не происходит.

Рис. 3.1. Режим холостого хода возбужденного синхронного генератора (в проводниках якоря показаны направления ЭДС и тока)

 

 

Режим нагрузки синхронного генератора

При подключении возбужденного генератора на симметричную 3х-фазную нагрузку,в обмотке якоря появится ток I, который создаст свое магнитное поле. Это поле называют – полем реакции якоря и обозначают Фа. В установившемся режиме работы поле реакции якоря постоянно по амплитуде, вращается относительно якоря с синхронной скоростью и поэтому неподвижно относительно ротора.

Когда была построена теория синхронных машин, выяснилась решающая роль магнитного поля реакции якоря на параметры машины и на работу всей энергосистемы. Поэтому рассмотрим физические процессы, связанные с реакцией якоря подробнее. Для построения теории вводится система координат d-q неподвижная относительно индуктора, и говорят о продольной - d и поперечной - q оси синхронной машины.

Реакция якоря синхронной машины.В установившемся режиме поле реакции якоря и индуктор неподвижны относительно друг друга. Однако взаимное расположение поля реакции якоря и индуктора зависит от характера нагрузки (активная, индуктивная, емкостная или смешанная), и этот факт имеет важнейшее значение для понимания энергетических процессов в синхронной машине. Покажем это.

Чисто активная нагрузка(рис. 3.2).При чисто активной нагрузке ток якоря совпадает по фазе с ЭДС. Это означает, что во всех проводниках якоря Е и Iбудут иметь одинаковое направление. На рис. 3.2 это иллюстрируется на векторной диаграмме и на осцилограмме. По направлению ЭДС в проводниках определим направления токов. Токи в верхней половине якоря направлены (+), в нижней половине направлены (·) и согласно “правилу буравчика” такая система токов создает поле реакции Фа направленное перпендикулярно полю возбуждения Фв. Таким образом чисто активный ток якоря создает поперечную реакцию Фаq.

Рассматривая установившийся режим синхронной машины, следует помнить, что вся картина распределения ЭДС и токов, индуктор и магнитные поля вращается относительно статора с синхронной скоростью nи неподвижна относительно индуктора. Это означает что электромагнитные процессы протекают только в якоре, а в индукторе их по прежнему нет.

 

Рис. 3.2. Положение магнитных полей возбуждения и реакции якоря при чисто активной нагрузке

 

Чисто индуктивная нагрузка.При такой нагрузке ток I отстает от ЭДС на 90 эл. градусов. При положении индуктора показанном на рисунке 3.3 ЭДС в проводнике А максимальна и направлена (+), тогда максимальное значение тока I с направлением (+) будет в проводнике отстающем от А на 90 эл. градусов (на рисунке он не показан) а также в проводниках С и Y.

 

Рис. 3.3. Положение магнитных полей возбуждения и реакции якоря при индуктивной нагрузке

 

 

Направления токов в остальных проводниках также показаны на рис. 3.3. Полученная система токов в обмотке якоря создает магнитное поле Фа направленное навстречу полю возбуждения и таким образом размагничивает генератор. Таким образом чисто индуктивный ток создает продольную размагничивающую реакцию якоря Фа=-Фd.

Вывод о размагничивании машины полностью соответствует физическим представлениям об индуктивной нагрузке. Как известно, индуктивная нагрузка, например, катушка индуктивности, потребляет реактивную мощность, которая идет на создание в ней магнитного поля. Ровно такую реактивную мощность генератор теряет за счет размагничивания.

Чисто емкостная нагрузка. При такой нагрузке ток I опережает ЭДС на 90 эл. градусов и поэтому распределение токов в витках обмотки якоря будет таким как показано на рис. 3.4. Полученная система токов в обмотке якоря создает магнитное поле Фа направленное согласно с полем возбуждения, в результате чего генератор намагничивается. Чисто емкостный ток создает продольную намагничивающую реакцию якоря Фа=+Фq.

Полученная картина токов и полей также соответствует физическим представлениям о емкостной нагрузке. Емкость, как известно, является источником реактивной мощности, которую генератор и потребляет, при этом намагничиваясь.

 

Рис. 3.4. Положение магнитных полей возбуждения и реакции якоря при емкостной нагрузке

Смешанная нагрузка (рис.3.5). В качестве примера рассмотрим активно-индуктивную нагрузку, при которой ток якоря отстает от ЭДС на угол . Ток I и созданный им магнитный поток Фа формально можно разложить на оси, получим токи Id, Iq.

 

Рис. 3.5. Реакция якоря при смешанной нагрузке

 

 

Разложению тока I можно дать следующее толкование. Реальная обмотка якоря с током I заменяется двумя фиктивными обмотками неподвижными относительно индуктора по которым протекают токи Id, Iq и которые создают свои магнитные поля Фad , Фaq . Эти поля индуктируют в обмотке якоря соответствующие электродвижущие силы Еad , Еaq

 

 

Итак реальное поле Фа заменили его составляющими вдоль осей d - q и говорят о продольной Фаd и поперечной Фаq реакции якоря.

 



Дата добавления: 2021-04-21; просмотров: 179;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.01 сек.