Общая теория систем Л. Берталанфи


 

Из сказанного в гл.6 следует, что обескураживающая сложность живых систем может явиться серьёзным препятствием при разработке теоретической биологии, которая обладала бы, как и физика, высокой степенью математизации. Однако история науки учит, что человек обычно находит средства для преодоления первоначально кажущихся непреодолимыми трудностей.

Некоторые крупные учёные считают, что разработка теоретической биологии в принципе возможна. Так, например, специалист в области математической логики, философ, лауреат Нобелевской премии по литературе 1950 г. Бертран Рассел (1872 – 1970) в книге «Человеческое познание, его сфера и границы» пишет: «…имеются серьёзные основания думать, что всё в поведении живой материи может теоретически быть объяснено в терминах физики и химии» [26, c. 68]. У.Р. Эшби считает, что выход из данного затруднительного положения должен заключаться в поиске способов упрощения [45, с.78]. Российский учёный Ю.А. Шрейдер считает, что при создании теории биосистем необходимо учитывать и саму познающую систему, т.е. человека с его способностью познавать, чего совершенно не требуется в теоретической физике [41, с.149 – 171]. И наконец, некоторыми учёными высказывается мнение, что современная методика мышления человека в принципе не приспособлена для понимания биосистем и необходимо разработать специальную биологику [11, с. 7].

Одной из достаточно серьёзных попыток приблизиться к решению данной проблемы можно считать разработку общей теории систем (ОТС). Основателем этой теории принято считать австрийского биолога - теоретика Людвига фон Берталанфи (1901 – 1972) [45], хотя системные идеи в неявной форме использовали и другие разработчики теоретической биологии: Э.С. Бауэр в России [1], Н. Рашевский в США [27] и др.

Первые публикации Л. Берталанфи с системными идеями в зачаточной форме появились в 1927 г. В более проработанном виде они были опубликованы в печати в конце 40-х гг. ХХ в. На русском языке основные положения ОТС Берталанфи начали печататься с 1969 г. [3, с.7 – 29]

Центральным понятием ОТС является понятие системы. Это понятие для науки не является новым. Аналоги такого понятия, наверное, использовались ещё древними учёными сотни, а то и тысячи лет назад для обозначения объектов, состоящих из нескольких частей, когда части находятся в определённом отношении друг к другу. Но до создания ОТС понятие использовалось в редких конкретных случаях. Специалисты в разных областях знания вкладывали в него свой, специфический для данной конкретной науки, смысл.

Даже в современном широком понимании понятие «система» трактуется разными учёными по-разному. Наиболее широко определяет систему У.Р. Эшби. Он считает, что система – это любая совокупность явлений, какая Вам только заблагорассудится (например, температура воздуха в данной комнате, его влажность и курс доллара в Сингапуре), лишь бы был задан принцип, позволяющий рассматривать эту совокупность как систему. Далее Эшби уточняет, что анализ на основе здравого смысла приведёт к разумному ограничению всего такого множества систем, которое в результате будет представлено только реальными системами.

Берталанфи определяет систему более конкретно, как любое множество элементов любой материальной природы, которые находятся в определённом отношении друг к другу. Недостатком такого определения можно считать, что оно ограничивается только материальными системами, а идеальные системы из него выпадают. В частности, математику мы определили как систему знаков, с помощью которой моделируются явления действительности. Это вполне строгая, определённая система, но если взять за основу определение Берталанфи, то получится, что математика к системам не относится.

Приведём ещё одно определение системы, которое даёт специалист в области кибернетики С. Бир: система – это всё, что состоит из связанных между собою частей [4]. Но в окружающем мире всё, так или иначе, связано друг с другом. Тогда, чтобы определение Бира не потеряло смысла, его следует дополнить тем, что связи внутри системы должны быть сильнее связей системы с окружающей средой.

Основной практический смысл современного подхода к понятию «система» состоит в том, что всё научное знание ставится на общую основу. Особенности современной науки таковы, что она в ходе развития естественным образом распалась на самостоятельные отрасли и стала теряться общая картина мира. Учёные разных областей не в состоянии понять друг друга. Даже математика начала разделяться на самостоятельные, плохо связанные между собой разделы. Пришлось прилагать специальные усилия для постановки математики на общую аксиоматическую базу. Этим занялась группа французских математиков, выпустившая под псевдонимом Бурбаки многотомный труд, в котором все разделы математики рассматриваются с единых позиций.

Современное естествознание также не может обойтись без понятия система в его наиболее общем смысле. По этой причине, всё что было изложено в предыдущих главах настоящей книги, по умолчанию было сделано с использованием системного подхода.

Задачей такого подхода является выявление законов строения, образования, поведения и развития любых реальных систем живой и неживой природы.

 

Основные принципы системного подхода

1. Принцип иерархии. Любая система есть комплекс более простых систем, называемых, в зависимости от степени сложности, либо подсистемами, либо элементами системы. Термин «элемент» предполагает, что в пределах ведущегося рассуждения данная часть системы может приниматься как более неделимая. В то же время сама система может являться частью системы более высокого ранга. В соответствии с этим принципом один из вариантов иерархии материальных систем может быть представлен такой последовательностью: …кварки → элементарные частицы → атомы → молекулы → агрегаты молекул → органоиды клеток → клетки → ткани → органы → организмы → популяции → экосистемы → биосфера → Земля → солнечная система → галактика → метагалактика… Если жизнь считать необязательным, случайным явлением, то в указанной последовательности между агрегатами молекул и Землёй может находиться иерархическая система геологических структур.

2. Принцип динамичности. Системы находятся в постоянном движении, непрерывно меняют свои характеристики: теряют одни элементы и приобретают другие, сами входят или выходят из систем более высокого уровня. Мерой изменений является энергия (см. п.2.1). Неизменность некоторых систем – явление условное, зависящее лишь от масштабов времени. Материальных систем существующих бесконечно долго, не бывает.

3. Принцип целостности (организованности, или интегративный принцип). Система не есть простая механическая сумма частей. Свойства системы не могут быть выведены из свойств её элементов. Система обладает некоторым набором свойств, которые определяются только совокупным взаимодействием её частей. Такие свойства называются эмерджентными. Причём элементы, объединяясь в систему, могут терять часть своих свойств, которые они имели в свободном состоянии. Так, например, атомы натрия и хлора в свободном состоянии являются крайне агрессивными в химическом отношении, и любой контакт с ними живых клеток приводит к сильным нарушениям структуры и гибели. Соединившись же в систему молекул хлористого натрия, они становятся крайне полезным компонентом любых клеток, совершенно не проявляя никаких вредных свойств, за исключением случаев накопления в сверхвысоких концентрациях. Из принципа целостности следует, что организацию систем невозможно изучать путём их разложения на элементы с последующим изучением свойств этих элементов. Бесперспективность такого подхода к изучению систем особенно очевидна, если учесть сказанное в п.6.2, 6.3.

Из указанных системных принципов только третий можно считать относительно новым, специфичным именно для ОТС.

Принцип иерархии использовался человеком всегда при создании любых систем классификаций больших множеств элементов (классификация живых организмов, десятичная система исчисления и пр.)( подробнее см. п. 1.4, 4.7, рис. 4.6).

Принцип динамичности является менее древним. Был период в истории науки, который можно назвать метафизическим, когда считалось, что природа вечна и неизменна. Появление идеи изменчивости принято связывать с высказыванием древнегреческого мыслителя Гераклита (520 – 470 гг. до н.э.) о том, что нельзя дважды войти в одну реку. Впоследствии эта идея стала выражаться словами: «всё течёт, всё изменяется» и в конечном итоге привела к появлению теории эволюции жизни и Вселенной.

 

 

7.2. Детерминированные и вероятностные системы

 

Констатация того, что мир есть множество взаимодействующих систем, ещё не является радикальным решением проблемы познания сложной природы. Окружающий мир крайне многообразен, и требуется найти способ как-то ориентироваться в этом многообразии. Поэтому в рамках ОТС были предприняты многократные попытки разработать классификацию систем, что, в общем-то, не решено и по сегодняшний день. В качестве примера можно привести классификацию С. Бира. Он предложил различать простые, сложные и очень сложные системы на основании количества входящих в них элементов и способов их взаимодействия. Было также предложено учитывать определённость или неопределённость поведения систем путём их деления на детерминированные и вероятностные (табл.7.1).

 

Таблица 7.1

Классификация систем по С. Биру [4]

 

Системы Простые Сложные Очень сложные
  Детермини­рованные   Оконная задвижка, механический станок Цифровая ЭВМ, Автоматическая система управления технологическим процессом     Нет
  Вероят­ностные Подбрасываемая монета, движение медузы, статистический контроль качества продукции Условный рефлекс, промышленное предприятие Крупная фирма, экономика государства, мозг

 

Детерминированными называются системы, которые после строго определённого повторяемого воздействия всегда оказываются в одном и том же строго определённом состоянии.

Вероятностными являются системы, которые при одном и том же строго определённом повторяемом воздействии могут оказываться в разных состояниях. Указать, в каком состоянии они окажутся в каждом конкретном случае, невозможно. Можно только указать множество возможных состояний и вероятность каждого состояния.

Вполне понятно, что подобная классификация не является строгой. Нельзя точно определить, какие системы следует считать простыми, а какие сложными. Например, система из 10 элементов, судя по их количеству, может быть отнесена к простым. Но если взаимодействие этих элементов описывается с помощью теории графов (п.6.3), то теоретически возможное количество состояний системы определяется величиной 290 (≈ 1027).

Кроме того, даже строгое определение детерминированных и вероятностных систем может оказаться на практике не соответствующим действительности. Например, такая явно детерминированная система, как дверной замок в случае большого износа может в результате воздействия ключа не всегда переходить из состояния «открыто» в состояние «закрыто» (или наоборот). Разболтанный замок может оказаться системой вероятностной. В то же время можно теоретически допустить возможность создания механизма, который настолько точно будет подбрасывать монету, что она практически всегда будет падать на одну и ту же сторону. Здесь мы лишний раз убеждаемся, что любая строгая теория действует только в рамках определённых ограничений, в пределах которой справедливы заложенные в теорию постулаты (аксиомы).

 

 

7.2. Тектология А.А. Богданова

 

Как уже было отмечено, системные идеи высказывались некоторыми учёными ещё до появления трудов Л. Берталанфи. Среди этих учёных особое место принадлежит российскому учёному Александру Александровичу Малиновскому (1873 – 1928), который в российской и советской истории больше известен под псевдонимом Богданов.

Системные идеи начали формироваться у А.А. Богданова с самого начала ХХ столетия. В результате он пришёл к выводу, что в человеческом знании нужна теория, которая бы объясняла с общих позиций законы строения и функционирования любых сложных систем. Сам Богданов называл свою теорию «Всеобщая организационная наука». Сокращённое название «Тектология», от древнегреческого слова «строить, строительство».

В нашей стране внимание к этим трудам Богданова появилось лишь в 60-е гг., когда на подъёме были идеи ОТС и учёные стали интересоваться историей данного вопроса [31]. До этого момента Богданов был хорошо известен в нашей стране как крупный политик и философ с идеалистическим уклоном. С появлением марксистского движения в России в конце ХIХ в. он был его сторонником и соратником В.И. Ленина. Позднее, с 1899 по 1911 г. Богданов написал несколько философских книг, в которых подверг критике ряд положений марксизма, из-за чего сторонниками В.И. Ленина был отнесён к группе так называемых марксистов-ревизионистов. Интересно отметить, что к этой группе относили и первого народного комиссара просвещения 1917 – 1929 гг. А.В. Луначарского. До Октябрьской революции Богданов написал также ряд книг по экономике, которые были положительно оценены В.И. Лениным.

Основная идея тектологии А.А. Богданова – признание необходимости подходить к любому явлению со стороны его организации. Весь доступный нашему восприятию мир и особенно мир живого является совокупностью организованных вещей. Все природные объекты (комплексы) отличаются друг от друга степенью организованности. Под организованностью понимается свойство целого быть больше суммы своих частей (элементов). Чем более целое разнится от суммы своих частей, тем более оно организовано [5, с.31]. Тектология рассматривает все явления не как застывшие, а как непрерывные процессы организации и дезорганизации.

Элементы системы Богданов называет «активностями». Комплекс активностей оказывается больше суммы своих частей не потому, что в целом возникают новые активности, а потому, что в совокупности они по-новому взаимодействуют со средой.

Одним из решающих методов тектологии Богданов считает метод упрощения, который выражается в моделировании процессов, поскольку модель есть упрощенный аналог реального явления. Модели он делит на идеальные (мыслительные) и реальные (физические). И те, и другие всегда должны дополнять друг друга. Большое значение Богданов придаёт математике, считая её рано развившейся областью тектологии.

Целью тектологии является установление общих закономерностей организации любых явлений, процессов и систем на всех уровнях. Это необходимо для того, чтобы человеческая деятельность была в любой области наук и производства унифицирована, едина по методам, проводилась по единому плану [6, с.5 – 6].

Таким образом, основные системные идеи были сформулированы Богдановым задолго до появления общепринятых концепций Берталанфи. Неизвестность этих идей была обусловлена конкретными историческими условиями, изолированностью советской науки и философскими взглядами автора. Даже в Большой советской энциклопедии 2-го издания 50-х гг., где о Богданове имеется по энциклопедическим меркам очень большая, на целую страницу, статья, ни слова не говорится о тектологии. В заключение к сказанному интересно процитировать первую и последнюю фразы этой статьи: «Богданов (псевдоним Малиновского) Александр Александрович (1873-1928) - ревизионист; активно боролся против марксизма, извращая его с позиций реакционной махистской философии и вульгарного материализма; по профессии врач. …Богданов был организатором и с 1926 директором государственного института переливания крови и погиб в 1928, произведя на себе неудачный опыт» [7, с.343]. О некоторых интересных фактах биографии А.А. Богданова и создании тектологии можно узнать из монографии его сына А.А. Малиновского [20].

 

 

7.4. Самоорганизующиеся системы и синергетика

 

Для выяснения особенностей строения и функционирования живых систем весьма полезным и конструктивным оказалось разделение всех систем на изолированные, закрытые и открытые (п. 2.3). Этот подход позволил понять, что классическая термодинамика пригодна в принципе только для описания систем в состоянии термодинамического равновесия с высоким значением энтропии. Такое состояние со статистически равномерным распределением энергии между всеми частями системы принято называть хаотичным. Классическая термодинамика, утверждая, что все системы стремятся к равновесию, хаосу, не позволяла объяснить, каким образом из примитивных хаотичных систем могут возникать сложные упорядоченные системы, способные понижать свою энтропию.

В ходе решения этой проблемы бельгийским учёным русского происхождения Ильёй Романовичем Пригожиным (р. 1917) была разработана термодинамика необратимых процессов [24, 25], за которую автор был удостоен Нобелевской премии 1977 г. Эта теория позволила показать, что в открытых системах в результате возникающих флуктуаций (случайных концентраций энергии) могут возникать устойчивые, термодинамически неравновесные состояния с низкой энтропией. Такие системы при наличии потока энергии способны в дальнейшем понижать свою энтропию и увеличивать упорядоченность. Постоянное потребление энергии для поддержания антиэнтропийного состояния приводит к последующему её рассеиванию (диссипации) в тепло и к возрастанию энтропии окружающей среды. В связи с этим такие системы получили название антиэнтропийных и диссипативных структур.

Дальнейшее развитие идей И. Пригожина привело к разработке немецким физиком и математиком Германом Хакеном (р. 1927 г.) науки, названной автором синергетикой [35, 36]. Слово синергетика означает совместное кооперативное действие разнородных сил и элементов.

Основные идеи синергетики сводятся к тому, что сложные само­организующиеся системы состоят из разнородных, тесно взаимодействующих частей. В результате возникают эмерджентные свойства системы, не выводимые из свойств составных элементов и зависящие только от их определённого сочетания. Такие системы могут находиться далеко от состояния термодинамического равновесия и являются подвижными (изменчивыми). Математическое описание изменения параметров таких систем обычно требует применения нелинейных дифференциальных уравнений. Нелинейность означает, что параметры входят в эти уравнения со степенями, отличающимися от единицы, в отличие от более простых линейных физических систем.

Математический анализ нелинейных дифференциальных уравнений, описывающих диссипативные самоорганизующиеся системы, показывает, что их поведение может быть изображено графически в виде траекторий в многомерном пространстве. Такие траектории имеют тенденцию двигаться в сторону определённых областей этого многомерного пространства, в которых начинают циркулировать неопределённо долго. Такие области получили название аттракторы. При переходе от математической абстракции к конкретным реальным явлениям аттракторы означают устойчивое, но неравновесное состояние системы. Такое состояние часто проявляется в виде колебательного изменения параметров (аттрактор выглядит как замкнутый цикл) (рис.7.1).

 

 

Система с аттрактором относительно устойчива к внешним воздействиям, но только в определённых пределах. Сильные воздействия могут вывести систему из одного устойчивого состояния и перевести её в другое устойчивое состояние, которое будет свидетельствовать о наличии второго аттрактора и т.д. Могут быть и такие внешние воздействия, при которых траектория не приведёт к образованию аттрактора и система разрушится, перейдёт в состояние термодинамического равновесия (хаоса).

Математический анализ самоорганизующихся диссипативных систем показывает и то, что их поведение (траектория) за пределами аттракторов является принципиально не предсказуемым. Это проявляется в том, что в некоторых областях многомерного пространства существуют особые точки, в которых в соответствии с законами математики допустимо наличие более одного решения. При попадании в такие точки, которые получили название точек бифуркации, траектория раздваивается. Наличие точек бифуркации приводит к тому, что предсказать можно лишь определённое число возможных вариантов развития (эволюции) системы. Но какой конкретно вариант будет реализован, предсказать невозможно.

Реальным примером аттрактора можно считать нормальное состояние живого организма, когда его параметры не выходят за границы определённой области, называемой жизнью. Болезнь в таком случае можно рассматривать как выход из устойчивой области (аттрактора) в точке бифуркации, а процесс лечения как возвращение в область аттрактора.

 

 

8. КИБЕРНЕТИКА

 

 

8.1. Основные понятия и определения

 

Кибернетика определяется как наука, изучающая законы управления сложными системами. В дословном переводе с древнегреческого слово кибернетика означает «управление кораблём». Кибернетика возникла в результате бурного развития техники и появления очень сложных технических устройств (авианосцев, подводных лодок, ракет и т.д.) и электроники в середине ХХ столетия. Учёные, которые начали разрабатывать системы управления этими устройствами, заметили, что задачи управления, сформулированные на математическом языке, оказались практически идентичными как в случае описания систем управления сложными техническими системами, так и систем самоуправления живых организмов.

Первым научным трудом, в котором наиболее чётко были сформулированы принципы новой науки, была вышедшая в 1948 г. на английском языке книга американского математика Норберта Винера (1894 – 1964) «Кибернетика или управление и связь в животном и машине» [10].

Поскольку кибернетика тесно связана со сложными системами, многие из решаемых ею задач, оказались общими с общей теорией систем (ОТС). По мере развития обе теории настолько переплелись, что сегодня трудно указать границу между ними. Специалист в области биологической кибернетики А.Б.Коган считает, что ОТС является одним из разделов кибернетики, причём имеющим особо важное значение [15, с.10]. В то же время специалист в области системных исследований М.И. Сетров приводит высказывание, в котором Л. Берталанфи называет кибернетику составной частью ОТС [31]. Скорее всего, оба эти направления сегодня представляют одно целое, в котором они удачно дополняют друг друга и решают общие задачи.

Центральным понятием кибернетики, как и в ОТС, является понятие системы, которая в данном случае называется кибернетической. Под системой понимается объект, которым необходимо управлять. Здесь можно сразу отметить принципиальную разницу между кибернетикой и ОТС. Особенность кибернетического подхода состоит в том, что кибернетика не занимается анализом происхождения и внутреннего устройства систем. А в ОТС эти вопросы являются чуть ли не первостепенными. Кибернетика, как бы учитывая выводы ОТС о непреодолимой сложности внутреннего строения больших систем, не берётся за решение этой проблемы.

Кибернетическая система считается заданной, если указаны её параметры, воздействие на которые позволяет осуществлять управление, и параметры, по которым определяется эффективность управления. Первые принято называть входами системы и обозначать х1, х2, … хn. Вторые называются выходами системы и обозначаются у1, у2, … уm ( рис.8.1).

 

Выходные характеристики системы являются результатом преобразования входных воздействий внутри системы. Как это происходит, как связаны и взаимодействуют составные части (подсистемы: S1, S2, S3), кибернетику не интересует. Задачей – определить, как должны изменяться х1, х2, х3, чтобы у1, и у2 находились в заданных пределах?

Заданные значения выходов называются целью управления. Пока не найдены значения входов, соответствующие достижению цели, система называется чёрным ящиком. Если же необходимые соотношения между входами и выходами найдено, система называется белым ящиком.

Можно изготовить реальную материальную систему, соответствующую абстрактному изображению на рис.8.1. Такой моделью может быть ящик с тремя выключателями в качестве входов и двумя лампочками в качестве выходов. Тогда схема управления (белый ящик) может быть найдена путём перебора всех вариантов положений выключателей с одновременным определением вариантов включённых лампочек. Результат такого поиска может иметь вид табл. 8.1.

Таблица 8.1

Пример возможного соотношения входов и выходов
кибернетической системы рис.8.1

 

  Варианты включённых выключателей
х1 х2 х3 х1, х2, х1, х3 х2, х3 х1, х2, х3
Варианты загоревшихся лампочек у1            
у2            
у1, у2          

 

Из этой таблицы следует, что если, например, целью управления является поддержание горящими первой и второй лампочек одновременно, то достаточно держать включенными либо только один первый, либо все три выключателя вместе.

Рассмотрим другой пример, когда имеющийся один выходной параметр представляет собой непрерывно меняющуюся количественную физическую характеристику (мощность излучения лампочки). Входом также является меняющийся физический параметр (угол поворота рукоятки). Тогда система управления может быть изображена в виде математической функции у=f(х) (рис.8.2)

 

 

В этом случае, если цель управления определена как необходимость удерживать мощность излучения в интервале 3, то из графика функции у=f(х) следует, что х должен поддерживаться либо в пределах интервала 1, либо находиться в интервале 2.

В некоторых случаях может оказаться полезным рассмотреть в качестве чёрных ящиков подсистемы S1, S2, S3. Но чаще полезна обратная процедура, когда управляемых систем много, то целесообразно рассматривать их как одну систему, поскольку основной задачей кибернетического подхода является нахождение наиболее простых способов описания систем и их поведения.

Если все входы находятся под контролем управляющей системы, то проблем с управлением не возникает за исключением начального этапа, пока не найден белый ящик. Этот этап тоже может создать проблему в случае большого количества входов, поскольку возникает уже обсуждённый в гл. 6 вопрос о числе вариантов комбинаций. Тем не менее, системы с полностью контролируемыми входами не считаются предметами особого внимания в кибернетике.

Для истинно кибернетических систем характерно то, что не все их входы являются контролируемыми, т.е. выходы меняются и под действием не контролируемых входов. В этом случае невозможно пользоваться заранее определённым планом управления. Решения по воздействию на контролируемые входы приходится принимать непосредственно в процессе работы системы. Это можно делать, только получая непрерывную информацию о состоянии выходов. Такое управление, когда изменение входов зависит от изменения выходов, получило название «управление с обратной связью».

В системах с обратной связью, как правило, выделяется часть (управляющая подсистема), задачей которой является приём сигналов о состоянии выходов, сравнение этих состояний с целью управления и посылка сигналов, которые корректируют входные воздействия (рис. 8.3).

Вход

 

Обратные связи бывают положительные и отрицательные. Положительная обратная связь так действует на вход, что начавшееся изменение выходных характеристик начинает происходить ещё быстрее в том же направлении. Отрицательная обратная связь, наоборот, при отклонении выходных характеристик от заданных значений так воздействует на вход, что начавшееся изменение выхода затормаживается и меняется на противоположное. Система возвращается в исходное состояние.

Основная стратегия поведения сложных технических и самоорганизующихся (биологических) систем заключается в сохранении своих характеристик в заданных пределах. Поэтому в этих системах чаще используются отрицательные обратные связи. Например, холодильник или термостат должен поддерживать строго определённую температуру и в случае отклонения её в сторону увеличения или уменьшения возвращать в прежнее состояние. Другим примером является самолёт, летящий на автопилоте. Направление его движения может измениться под действием ветра, дождя, облаков. Это отклонение будет зафиксировано управляющей системой, которая посылкой сигналов к регулировочным механизмам вернёт самолёт на прежний курс.

Системы, которые при возмущающих воздействиях среды эффективно поддерживают постоянными свои параметры, получили название гомеостатических. Устойчивое состояние таких систем называется гомеостазом.

Системы с положительной обратной связью используются реже, обычно в тех случаях, когда согласно задаче управления требуется ускорить начавшееся изменение и быстро его закончить. Примером такого процесса являются автокаталитические химические реакции. Автокатализ означает, что в результате преобразования данного вещества, образуется продукт, ускоряющий это преобразование. И чем быстрее идёт реакция, тем больше образуется катализатора, процесс ускоряется ещё сильнее. Такие процессы носят взрывной характер и часто приводят к катастрофическим явлениям. Системы резко переходят из одного состояния в другое. К таким явлениям можно отнести снежные лавины, когда случайно появившиеся небольшие комки увеличиваются в размерах и усиливают срывающее воздействие на остальную массу снега. Появляется ещё больше комьев, причём более крупных. При атомном взрыве первоначально появившееся небольшое количество нейтронов разбивает атомы урана с высвобождением ещё большего количества нейтронов и т.д.

На основании сказанного можно заключить, что кибернетика, имея много общего с ОТС, решает несколько более узкую задачу изучения систем управления, не рассматривая физические принципы их организации. Это подтверждают и слова У.Р. Эшби, который в своей книге «Введение в кибернетику» пишет: «Во всей нашей книге принимается, что внешние соображения уже определили цель, т.е. допустимые состояния … нас занимает лишь проблема того, как достичь этой цели, несмотря на помехи и трудности» [44]. Может возникнуть вопрос: «Что означают слова «внешние соображения»? Для человека, незнакомого с принципами кибернетики, ответ может быть обескураживающим. Эти слова могут означать что угодно, что Вас больше устраивает, кибернетику это не интересует. Это означает, что тот, кто занимается управлением, может не знать, откуда и как появилась управляемая система и кто задал цель её управления. В биологии, в естествознании или в ОТС эти слова могут означать «природа».

 

 

8.2. Биологические системы и кибернетика

 

Живые системы созданы природой по её законам. Целью этих систем является выживание. Это означает, что в меняющихся условиях окружающей среды организмы или экологические системы должны сохранять все свои основные параметры в пределах, которые соответствуют состоянию, называемому жизнью.

Входными характеристиками для живых организмов являются все факторы окружающей среды. Многие из этих факторов часто и быстро меняются, что сказывается на изменении различных параметров организмов. Эти параметры можно рассматривать как выходные характеристики.

Живые системы разного уровня организации имеют соответствующие системы регуляции, которые развивались и усложнялись в ходе эволюции жизни. Наиболее сложную и совершенную систему регуляции имеют высшие животные и человек. Эта система представлена двумя подсистемами, одна из которых называется гуморальной, а вторая нервной. В гуморальной системе управляющими сигналами являются химические вещества (гормоны, ферменты и др.). В нервной системе основными сигналами служат электрические импульсы.

Специальные нервные окончания, идущие от центральной нервной системы, контактируют с большим количеством различных рецепторов, часть которых воспринимает внешние воздействия (входы), а другая часть (интерорецепторы) – сигналы о состоянии собственных параметров организма (выходы). После сложной обработки в центральной нервной системе формируются управляющие сигналы, которые так изменяют поведение (входы) организма, что вредные воздействия уменьшаются (отрицательная обратная связь), а положительные воздействия усиливаются (положительная обратная связь).

Регуляторные возможности организмов не беспредельны. Сохранить параметры организма и выжить можно только в том случае, если параметры среды (входы) не выходят за рамки определённых значений. Каждый фактор для данного вида характеризуется определённым интервалом, в пределах которого организмы остаются живыми. Этот интервал называется экологической валентностью, или толерантностью. Эволюция жизни в целом идёт в направлении расширения пределов выживания.

Так, для человека как чисто биологического существа температурный интервал среды выживания при использовании только биохимических и биофизических механизмов терморегуляции ориентировочно находится в пределах 15 – 45оС. Но, используя такую поведенческую реакцию как изготовление одежды, человек смог несколько расширить этот интервал. А позднее, при использовании технических систем, появилась возможность находиться в среде с температурой от космического холода до сотен градусов Цельсия. Среди входных характеристик для человека, помимо уже упомянутой температуры, можно также назвать необходимое количество и качество пищи, воды, физические воздействия: свет, давление, гравитация, биологические факторы в виде инфекций, паразитов, хищников и т.д.

При этом к выходным параметрам можно отнести определённую температуру тела (36 – 37оС), кровяное давление (60 – 140 мм рт. ст.), концентрацию различных веществ в крови (сахар, соли, витамины). Все эти и многие другие параметры находятся под постоянным контролем управляющих систем организма.

Помимо организменно-видового уровня, кибернетический подход хорошо объясняет многие процессы и на других уровнях биологической организации, например, на популяционном или биогеоценотическом. В частности, по принципу отрицательной обратной связи работают гомеостатические механизмы, обеспечивающие постоянство численности особей в естественных популяциях. Классическим примером является взаимодействие популяций хищника и жертвы. Рост численности жертвы, действуя как положительная связь, способствует росту численности хищника. В свою очередь увеличивающаяся популяция хищника по обратной отрицательной связи уменьшает численность жертвы, в результате снижается и численность хищника (рис.8.4).

               
   
     
Рис.8.4. Регуляция численности популяций в биоценозе по принципу отрицательной обратной связи
 
     

Дата добавления: 2020-10-25; просмотров: 391;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.032 сек.