Перемагничивание и коэрцитивная сила


Материалы, обладающие большой магнитной проницаемостью, называют ферромагнитными. К ним относятся железо, никель, кобальт и их сплавы. Оказавшись во внешнем магнитном поле, эти материалы значительно усиливают его. Это явление упрощенно можно объяснить таким образом.

Ферромагнитные материалы имеют области самопроизвольного намагничивания. Магнитное состояние каждой из таких областей характеризуется вектором намагниченности. Векторы намагниченности отдельных областей (доменов) ориентированы случайным образом. Поэтому намагниченность ферромагнитных тел в отсутствие внешнего магнитного поля не проявляется.

Если ферромагнитное тело поместить во внешнее магнитное поле, то под его воздействием произойдут изменения, в результате которых векторы намагниченности отдельных областей самопроизвольного намагничивания будут ориентированы в направлении внешнего поля. Индукция результирующего магнитного поля будет определяться как индукцией внешнего поля, так и магнитной индукцией отдельных, доменов, т.е. результирующее значение индукции будет намного превышать ее начальное значение. Таким образом, суммарное магнитное поле значительно превысит внешнее поле.

Если через катушку пропускать ток, меняющий свое направление, то сердечник будет перемагничиваться. Рассмотрим этот процесс (рисунок 2.2). При увеличении тока в катушке магнитная индукция возрастает до индукции насыщения (точка а). При уменьшении тока магнитная индукция снижается но так, что при тех же значениях Н она оказывается больше значений магнитной индукции, соответствующих увеличению тока. Это объясняется тем, что часть доменов еще сохраняет свою ориентацию. Таким образом, при H = 0 в сердечнике сохраняется магнитное поле, характеризуемое остаточной индукцией Вr (точка b). При увеличении тока в противоположном направлении магнитное поле катушки компенсирует магнитное поле, созданное доменами сердечника. При напряженности поля Нc (точка с), которая называется коэрцитивной силой, результирующая магнитная индукция окажется равной нулю. Дальнейшее увеличение тока в катушке вызовет перемагничивание сердечника, т.е. поворот векторов намагниченности на 180°. При некотором значении Н (точка d) сердечник снова будет насыщаться. При уменьшении тока в катушке до нуля индукция будет уменьшаться до остаточной индукции (точка е). Увеличение тока в положительном направлении вызовет намагничивание сердечника до исходного состояния (точка а). Полученную кривую называют петлей гистеризиса (запаздывания). Участок 0-а характеристики намагничивания называют основной кривой намагничивания.

 

Рисунок 1.2 – Схема процесса циклического перемагничивания

 

Процесс перемагничивания связан с затратами энергии и сопровождается выделением теплоты. Энергия, которая затрачивается за один цикл перемагничивания, пропорциональна площади, ограниченной петлей гистеризиса. В зависимости от вида петли гистеризиса ферромагнитные материалы подразделяют на магнитомягкие и магнитотвердые.

Магнитомягкие материалы обладают круто поднимающейся основной кривой намагничивания и относительно малыми площадями гистеризисных петель. Для магнитотвердых материалов характерны пологость основной кривой намагничивания и большая площадь гистеризисной петли. На рисунке 1.3, а – в приведены петли гистерезиса для различных материалов.

 

а – электротехническая сталь (магнитомягкий материал); б – пермаллой (магнитомягкий материал); в – магнико (магнитотвердый материал)

Рисунок 1.3 – Петли гистерезиса для различных материалов

 



Дата добавления: 2022-05-27; просмотров: 141;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.