МЕТОДЫ ЛУЧЕВОЙ ТЕРАПИИ

 

Методы лучевой терапии делятся на наружные и внутренние в зависи­мости от способа подведения ионизирующего излучения к облучаемому оча­гу. Сочетание методов называют сочетанной лучевой терапией.

Наружные методы облучения — методы, при которых источник излучения находится вне организма. К наружным методам относятся методы дистан­ционного облучения на различных установках с использованием разного расстояния от источника излучения до облучаемого очага.

К наружным методам облучения относятся:

— дистанционная у-терапия;

— дистанционная, или глубокая, рентгенотерапия;

— терапия тормозным излучением высокой энергии;

— терапия быстрыми электронами;

— протонная терапия, нейтронная и терапия другими ускоренными час­тицами;

— аппликационный метод облучения;

— близкофокусная рентгенотерапия (при лечении злокачественных опу­холей кожи).

Дистанционная лучевая терапия может проводиться в статическом и под­вижном режимах. При статическом облучении источник излучения не­подвижен по отношению к больному. К подвижным методам облучения относятся ротационно-маятниковое или секторное тангенциальное, рота-ционно-конвергентное и ротационное облучение с управляемой скоростью. Облучение может осуществляться через одно поле или быть многополь­ным — через два, три и более полей. При этом возможны варианты встреч­ных или перекрестных полей и др. Облучение может проводиться открытым пучком или с использованием различных формирующих устройств — за­щитных блоков, клиновидных и выравнивающих фильтров, решетчатой диафрагмы.

При аппликационном методе облучения, например в офтальмологичес­кой практике, аппликаторы, содержащие радионуклиды, прикладывают к патологическому очагу.

Близкофокусную рентгенотерапию применяют для лечения злокачест­венных опухолей кожи, при этом расстояние от выносного анода до опухо­ли составляет несколько сантиметров.

Внутренние методы облучения — методы, при которых источники излуче­ния вводят в ткани или в полости организма, а также применяют в виде ра­диофармацевтического препарата, введенного внутрь пациента.

К внутренним методам облучения относятся:

— внутриполостное облучение;

— внутритканевое облучение;

— системная радионуклидная терапия.

При проведении брахитерапии источники излучения с помощью спе­циальных устройств вводятся в полые органы методом последовательно­го введения эндостата и источников излучения (облучение по принципу afterloading). Для осуществления лучевой терапии опухолей разных лока­лизаций существуют различные эндостаты: метрокольпостаты, метрастаты, кольпостаты, проктостаты, стомататы, эзофагостаты, бронхостаты, цитоста-ты. В эндостаты поступают закрытые источники излучения, радионуклиды, заключенные в оболочку-фильтр, в большинстве случаев имеющие форму цилиндров, игл, коротких стерженьков или шариков.

При радиохирургическом лечении установками гамма-нож, кибер-нож осуществляют прицельное облучение малых мишеней с помощью специаль­ных стереотаксических устройств с использованием точных оптических на­правляющих систем для трехмерной (three-dimensional — 3D) радиотерапии множественными источниками.

При системной радионуклидной терапии используют радиофармацевти­ческие препараты (РФП), вводимые пациенту внутрь, соединения, тропные к определенной ткани. Например, путем введения радионуклида йода про­водят лечение злокачественных опухолей щитовидной железы и метастазов, при введении остеотропных препаратов — лечение метастазов в кости.

Виды лучевого лечения. Различают радикальную, паллиативную и симп­томатическую цели лучевой терапии. Радикальную лучевую терапию прово­дят с целью излечения больного с применением радикальных доз и объемов облучения первичной опухоли и зон лимфогенного метастазирования.

Паллиативное лечение, направленное на продление жизни больного пу­тем уменьшения размеров опухоли и метастазов, выполняют меньшими, чем при радикальной лучевой терапии, дозами и объемами облучения. В про­цессе проведения паллиативной лучевой терапии у части больных при вы­раженном положительном эффекте возможно изменение цели с увеличени­ем суммарных доз и объемов облучения до радикальных.

Симптоматическую лучевую терапию проводят с целью снятия каких-либо тягостных симптомов, связанных с развитием опухоли (болевой син­дром, признаки сдавления сосудов или органов и др.), для улучшения ка­чества жизни. Объемы облучения и суммарные дозы зависят от эффекта лечения.

Лучевую терапию проводят с различным распределением дозы облучения во времени. В настоящее время применяют:

— однократное облучение;

— фракционированное, или дробное, облучение;

— непрерывное облучение.

Примером однократного облучения служит протонная гипофизэктомия, когда лучевую терапию выполняют за один сеанс. Непрерывное облучение происходит при внутритканевом, внутри полостном и аппликационном ме­тодах терапии.

Фракционированное облучение является основным методом подведе­ния дозы при дистанционной терапии. Облучение проводят отдельными порциями, или фракциями. Применяют различные схемы фракциониро­вания дозы:

— обычное (классическое) мелкое фракционирование — 1,8—2,0 Гр в день 5 раз в неделю; СОД (суммарная очаговая доза) — 45—60 Гр в зависимости от гистологического вида опухоли и других факторов;

— среднее фракционирование — 4,0—5,0 Гр в день 3 раза в неделю;

— крупное фракционирование — 8,0—12,0 Гр в день 1—2 раза в неделю;

 

— интенсивно-концентрированное облучение — 4,0—5,0 Гр ежедневно в течение 5 дней, например в качестве предоперационного облучения;

— ускоренное фракционирование — облучение 2—3 раза в сутки обычны­ми фракциями с уменьшением суммарной дозы за весь курс лечения;

— гиперфракционирование, или мультифракционирование — дробление суточной дозы на 2—3 фракции с уменьшением дозы за фракцию до 1,0—1,5 Гр с интервалом 4—6 ч, при этом продолжительность курса может не изменить­ся, но суммарная доза, как правило, повышается;

— динамическое фракционирование — облучение с различными схема­ми фракционирования на отдельных этапах лечения;

— сплит-курсы — режим облучения с длительным перерывом на 2—4 нед в середине курса или после достижения определенной дозы;

— низкодозный вариант фотонного тотального облучения тела — от 0,1— 0,2 Гр до 1—2 Гр суммарно;

— высокодозный вариант фотонного тотального облучения тела от 1—2 Гр до 7—8 Гр суммарно;

— низкодозный вариант фотонного субтотального облучения тела от 1—1,5 Гр до 5—6 Гр суммарно;

— высокодозный вариант фотонного субтотального облучения тела от 1—3 Гр до 18—20 Гр суммарно;

— электронное тотальное или субтотальное облучение кожи в различных режимах при ее опухолевом поражении.

Величина дозы за фракцию имеет большее значение, чем общее время курса лечения. Крупные фракции более эффективны, чем мелкие. Укруп­нение фракций при уменьшении их числа требует уменьшения суммарной дозы, если не изменяется общее время курса.

Различные варианты динамического фракционирования дозы хорошо разработаны в МНИОИ имени П. А. Герцена. Предложенные варианты ока­зались гораздо эффективнее, чем классическое фракционирование или под­ведение равных укрупненных фракций. При проведении самостоятельной лучевой терапии или в плане комбинированного лечения используют изо-эффективные дозы при плоско клеточном и аденогенном раке легкого, пи­щевода, прямой кишки, желудка, гинекологических опухолях, саркомах мягких тканей. Динамическое фракционирование существенно повысило эффективность облучения за счет увеличения СОД без усиления лучевых реакций нормальных тканей.

Величину интервала при сплит-курсе рекомендуется сокращать и до 10— 14 дней, так как репопуляция выживших клоновых клеток появляется в на­чале 3-й недели. Тем не менее при расщепленном курсе улучшается пере­носимость лечения, особенно в случаях, когда острые лучевые реакции препятствуют проведению непрерывного курса. Исследования показыва­ют, что выживающие клоногенные клетки развивают настолько высокие темпы репопуляции, что для компенсации каждый дополнительный день перерыва требует прибавки примерно 0,6 Гр.

При проведении лучевой терапии используют методы модификации ра­диочувствительности злокачественных опухолей. Радиосенсибилизация лу­чевого воздействия — процесс, при котором различные способы приводят к увеличению поражения тканей под влиянием облучения. Радиопротек­ция — действия, направленные на снижение поражающего эффекта иони­зирующего излучения.

Оксигенотерапия — метод оксигенации опухоли во время облучения с ис­пользованием для дыхания чистого кислорода при обычном давлении.

Оксигенобаротерапия — метод оксигенации опухоли во время облучения с использованием для дыхания чистого кислорода в специальных барока­мерах под давлением до 3—4 атм.

Использование кислородного эффекта при оксигенобаротерапии, по дан­ным СЛ. Дарьяловой, было особенно эффективно при лучевой терапии не­дифференцированных опухолей головы и шеи.

Регионарная турникетная гипоксия — метод облучения больных со злока­чественными опухолями конечностей в условиях наложения на них пнев­матического жгута. Метод основан на том, что при наложении жгута р02 в нормальных тканях в первые минуты падает почти до нуля, а в опухоли напряжение кислорода еще некоторое время остается значительным. Это дает возможность увеличить разовую и суммарную дозы облучения без по­вышения частоты лучевых повреждений нормальных тканей.

Гипоксическая гипоксия — метод, при котором до и во время сеанса об­лучения пациент дышит газовой гипоксической смесью (ГГС), содержащей 10 % кислорода и 90 % азота (ГГС-10) или при уменьшении содержания кис­лорода до 8 % (ГГС-8). Считается, что в опухоли имеются так называемые ос-трогипоксические клетки. К механизму возникновения таких клеток отно­сят периодическое, длящееся десятки минут резкое уменьшение — вплоть до прекращения — кровотока в части капилляров, которое обусловлено в числе других факторов повышенным давлением быстрорастущей опухо­ли. Такие острогипоксические клетки радиорезистентны, в случае наличия их в момент сеанса облучения они «ускользают» от лучевого воздействия. В РОНЦ РАМН этот метод применяют с обоснованием, что искусственная гипоксия снижает величину предсуществующего «отрицательного» тера­певтического интервала, который определяется наличием гипоксических радиорезистентных клеток в опухоли при их практически полном отсутс­твии в нормальных тканях. Метод необходим для защиты высокочувстви­тельных к лучевой терапии нормальных тканей, расположенных вблизи об­лучаемой опухоли.

Локальная и общая термотерапия. Метод основан на дополнительном раз­рушительном воздействии на опухолевые клетки. Обоснован метод пере­гревом опухоли, который происходит в связи со сниженным кровотоком по сравнению с нормальными тканями и замедлением вследствие этого от­вода тепла. К механизмам радиосенсибилизирующего эффекта гипертермии относят блокирование ферментов репарации облученных макромолекул (ДНК, РНК, белки). При комбинации температурного воздействия и облу­чения наблюдается синхронизация митотического цикла: под воздействием высокой температуры большое число клеток одновременно вступает в на­иболее чувствительную к облучению фазу G2. Наиболее часто применяют локальную гипертермию. Существуют аппараты «ЯХТА-3», «ЯХТА-4», «PRI-MUS и+Я»для микроволновой (СВЧ) гипертермии с различными датчика­ми для прогревания опухоли снаружи или с введением датчика в полости (см. рис. 20, 21 на цв. вклейке). Например, для прогревания опухоли пред­стательной железы используют ректальный датчик. При СВЧ-гипертермии с длиной волны 915 МГц в предстательной железе автоматически поддержи­вается температура в пределах 43—44 °С в течение 40—60 мин. Облучение следует сразу за сеансом гипертермии. Имеется возможность для одновре­менной лучевой терапии и гипертермии («Гамма Мет», Англия). В настоя­щее время считается, что по критерию полной регрессии опухоли эффектив­ность термолучевой терапии в полтора-два раза выше, чем при проведении только лучевой терапии.

Искусственная гипергликемия приводит к снижению внутриклеточного рН в опухолевых тканях до 6,0 и ниже при очень незначительном уменьше­нии этого показателя в большинстве нормальных тканей. Кроме того, ги­пергликемия в условиях гипоксии ингибирует процессы пострадиационного восстановления. Считается оптимальным одновременное или последова­тельное проведение облучения, гипертермии и гипергликемии.

Электронакцепторные соединения (ЭАС) — химические вещества, способ­ные имитировать действие кислорода (его сродство с электроном) и избира­тельно сенсибилизировать гипоксические клетки. Наиболее употребитель­ными ЭАС являются метронидазол и мизонидазол, особенно при локальном применении в растворе диметилсульфоксида(ДМСО), что позволяет при со­здании в некоторых опухолях высоких концентраций препаратов сущест­венно улучшить результаты лучевого лечения.

Для изменения радиочувствительности тканей применяют также пре­параты, не связанные с кислородным эффектом, например ингибиторы ре­парации ДНК. К числу таких препаратов относятся 5-фторурацил, галои-дированные аналоги пуриновых и пиримидиновых оснований. В качестве сенсибилизатора применяют обладающий противоопухолевой активностью ингибитор синтеза ДНК-оксимочевину. К ослаблению пострадиационного восстановления ведет также прием противоопухолевого антибиотика акти-номицина Д. Ингибиторы синтеза ДНК могут быть использованы для вре-



Глава 4


менной искусственной синхронизации деления опухолевых клеток с целью последующего их облучения в наиболее радиочувствительных фазах мито-тического цикла. Определенные надежды возлагаются на применение фак­тора некроза опухолей.

Применение нескольких агентов, изменяющих чувствительность опухо­левой и нормальной тканей к облучению, называется полирадиомодифика-цией.

Комбинированные методы лечения — сочетание в различной последо­вательности хирургического вмешательства, лучевой терапии и химиоте­рапии. При комбинированном лечении лучевую терапию проводят в виде пред- или послеоперационного облучения, в некоторых случаях использу­ют интраоперационное облучение.

Целями предоперационного курса облучения являются уменьшение опу­холи для расширения границ операбельности, особенно при опухолях боль­ших размеров, подавление пролиферативной активности опухолевых клеток, уменьшение сопутствующего воспаления, воздействие на пути регионарного метастазирования. Предоперационное облучение приводит к уменьшению числа рецидивов и возникновения метастазов. Предоперационное облуче­ние является сложной задачей в плане решения вопросов уровня доз, мето­дов фракционирования, назначения сроков операции. Для нанесения серьез­ных повреждений опухолевым клеткам необходимо подведение высоких туморицидныхдоз, что увеличивает риск послеоперационных осложнений, так как в зону облучения попадают здоровые ткани. В то же время операция должна быть проведена вскоре после окончания облучения, так как выжив­шие клетки могут начать размножаться — это будет клон жизнеспособных радиорезистентных клеток.

Поскольку преимущества проведения предоперационного облучения в определенных клинических ситуациях доказаны по увеличению пока­зателей выживаемости больных, уменьшению числа рецидивов, необхо­димо четко соблюдать принципы проведения такого лечения. В настоящее время предоперационное облучение проводят укрупненными фракциями при дневном дроблении дозы, используются схемы динамического фрак­ционирования, что позволяет провести предоперационное облучение в ко­роткие сроки с интенсивным воздействием на опухоль с относительным щажением окружающих тканей. Операцию назначают через 3—5 дней пос­ле интенсивно-концентрированного облучения, через 14 дней после облу­чения с использованием схемы динамического фракционирования. Если предоперационное облучение проводят по классической схеме в дозе 40 Гр, приходится назначать операцию через 21—28 дней после стихания лучевых реакций.

Послеоперационное облучение проводятся в качестве дополнительного воздействия на остатки опухоли после нерадикальных операций, а также для уничтожения субклинических очагов и возможных метастазов в регио­нарных лимфатических узлах. В тех случаях, когда операция является пер­вым этапом противоопухолевого лечения, даже при радикальном удалении опухоли, облучение ложа удаленной опухоли и путей регионарного мета­стазирования, а также всего органа может существенно повысить результа­ты лечения. Следует стремиться к началу проведения послеоперационного облучения не позднее чем через 3—4 нед после операции.

При интраоперационном облучении больного, находящегося под нарко­зом, подвергают однократному интенсивному лучевому воздействию через открытое операционное поле. Применение такого облучения, при котором здоровые ткани просто механически отодвигаются из зоны предполагаемо­го облучения, позволяет повысить избирательность лучевого воздействия при местно распространенных новообразованиях. С учетом биологической эффективности подведение однократных доз от 15 до 40 Гр эквивалентны 60 Гр и более при классическом фракционировании. Еще в 1994г. на V Между­народном симпозиуме в Лионе при обсуждении проблем, связанных с ин-траоперационным облучением, были приняты рекомендации об исполь­зовании 20 Гр в качестве максимальной дозы для снижения риска лучевых повреждений и возможности проведения в дальнейшем при необходимости дополнительного наружного облучения.

Лучевую терапию чаще всего применяют в качестве воздействия на пато­логический очаг (опухоль) и области регионарного метастазирования. Иног­да используют системную лучевую терапию — тотальное и субтотальное об­лучение с паллиативной или симптоматической целью при генерализации процесса. Системная лучевая терапия позволяет добиться регресса очагов поражения у пациентов с резистентностью к химиопрепаратам.

Глава 5

 

ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ЛУЧЕВОЙ ТЕРАПИИ

 

5.1. АППАРАТЫ ДЛЯ ДИСТАНЦИОННОЙ ЛУЧЕВОЙ ТЕРАПИИ

 

5.1.1. Рентгенотерапевтические аппараты

Рентгенотерапевтические аппараты для дистанционной лучевой терапии разделяются на аппараты для дальнедистанционной и близкодистанцион-ной (близкофокусной) лучевой терапии. В России дальнедистанционное облучение проводят на аппаратах типа «РУМ-17», «Рентген ТА-Д», в кото­рых рентгеновское излучение генерируется напряжением на рентгеновс­кой трубке от 100 до 250 кВ. Аппараты имеют набор дополнительных филь­тров из меди и алюминия, комбинация которых при разных напряжениях на трубке позволяет индивидуально для разной глубины патологического очага получить необходимое качество излучения, характеризуемое слоем по­ловинного ослабления. Используют эти рентгенотерапевтические аппараты для лечения неопухолевых заболеваний. Близкофокусная рентгенотерапия осуществляется на аппаратах типа «РУМ-7», «Рентген-ТА», которые генери­руют низкоэнергетическое излучение от 10 до 60 кВ. Применяют для лечения поверхностных злокачественных опухолей.

Основными аппаратами для проведения дистанционного облучения яв­ляются гамма-терапевтические установки различной конструкции («Агат-Р», «Агат-С», «Рокус-М», «Рокус-АМ») и ускорители электронов, которые генери­руют тормозное, или фотонное, излучение с энергией от 4 до 20 МэВ и элек­тронные пучки разной энергии. На циклотронах генерируют нейтронные пучки, протоны ускоряют до больших энергий (50—1000 МэВ) на синхрофа­зотронах и синхротронах.

 

5.1.2. Гамма-терапевтические аппараты

В качестве радионуклидных источников излучения для дистанционной гамма-терапии чаще всего используют 60Со, а также l36Cs. Период полураспа­да 60Со составляет 5,271 года. Дочерний нуклид 60Ni является стабильным.

Источник помещают внутрь радиационной головки гамма-аппарата, ко­торая создает надежную защиту в нерабочем состоянии. Источник имеет форму цилиндра диаметром и высотой 1—2 см. Корпус аппарата изготав­


 
 

ливают из нержавеющей стали, внутри помещают активную часть источника в виде набора дисков. Радиационная го­ловка обеспечивает выпуск, формиро­вание и ориентацию пучка у-излучения в рабочем режиме. Аппараты создают значительную мощность дозы на рас­стоянии десятков сантиметров от ис­точника. Поглощение излучения вне заданного поля обеспечивается диа­фрагмой специальной конструкции. Существуют аппараты для статичес-


кого и подвижного облучения. В пос- Рис. 22. Гамма-терапевтический ап-леднем случае источник излучения, парат для дистанционного облучения больной или оба одновременно в про- рОкус"м цессе облучения движутся относитель­но друг друга по заданной и контролируемой программе. Дистанционные аппараты бывают статические (например, «Агат-С»), ротационные («Агат-Р», «Агат-Р1», «Агат-Р2» — секторное и круговое облучение) и конвергентные («Рокус-М», источник одновременно участвует в двух согласованных круго­вых движениях во взаимно перпендикулярных плоскостях) (рис. 22).

В России (Санкт-Петербург), например, выпускается гамма-терапевтичес­кий ротационно-конвергентный компьютеризированный комплекс «Рокус-АМ». При работе на этом комплексе можно осуществлять ротационное облу­чение с перемещением радиационной головки в пределах 0-^360° с открытым затвором и остановкой в заданных позициях по оси ротации с минимальным интервалом в 10°; использовать возможность конвергенции; проводить сек­торное качание с двумя и более центрами, а также применять сканирующий способ облучения при непрерывном продольном движении лечебного стола с возможностью перемещения радиационной головки в секторе по оси экс­центричности. Необходимыми программами обеспечиваются: дозное рас­пределение в облучаемом пациенте с оптимизацией плана облучения и рас­печаткой задания на расчеты параметров облучения. С помощью системной программы контролируют процессы облучения, управления, обеспечения безопасности проведения сеанса. Форма полей, создаваемых аппаратом, пря­моугольная; пределы изменения размеров поля от 2,0х2,0ммдо 220 х 260 мм.

 

5.1.3. Ускорители частиц

Ускоритель частиц — это физическая установка, в которойс помощьюэлект-рическихи магнитных полей получают направленные пучки электронов, про­тонов, ионов и других заряженных частиц с энергией, значительно превыша­ющей тепловую энергию. В процессе ускорения повышаются скорости частиц. Основная схема ускорения частиц предусматривает три стадии: 1) формиро­вание пучка и его инжекцию; 2) ускорение пучка и 3) вывод пучка на ми­шень или осуществление соударения встречных пучков в самом ускорителе.

Формирование пучка и его инжекция. Исходным элементом любого уско­рителя служит инжектор, в котором имеется источник направленного по­тока частиц с низкой энергией (электронов, протонов или других ионов), а также высоковольтные электроды и магниты, выводящие пучок из источ­ника и формирующие его.

Источник формирует пучок частиц, который характеризуется средней начальной энергией, током пучка, его поперечными размерами и средней угловой расходимостью. Показателем качества инжектируемого пучка слу­жит его эмиттанс, то есть произведение радиуса пучка на его угловую расхо­димость. Чем меньше эмиттанс, тем выше качество конечного пучка частиц с высокой энергией. По аналогии с оптикой ток частиц, деленный на эмит­танс (что соответствует плотности частиц, деленной на угловую расходи­мость), называют яркостью пучка.

Ускорение пучка. Пучок формируется в камерах или инжектируется в одну или несколько камер ускорителя, в которых электрическое поле повышает скорость, а следовательно, и энергию частиц.

В зависимости от способа ускорения частиц и траектории их движения установки подразделяют на линейные ускорители, циклические ускорители, микротроны. В линейных ускорителях частицы ускоряются в волноводе с по­мощью высокочастотного электромагнитного поля и движутся прямолиней­но; в циклических ускорителях происходит ускорение электронов на пос­тоянной орбите с помощью возрастающего магнитного поля, и движение частиц происходит по круговым орбитам; в микротронах ускорение проис­ходит на спиральной орбите.

Линейные ускорители, бетатроны и микротроны работают в двух режи­мах: в режиме вывода пучка электронов с диапазоном энергии 5—25 МэВ и в режиме генерирования тормозного рентгеновского излучения с диапа­зоном энергии 4—30 МэВ.

К циклическим ускорителям относятся также синхротроны и синхроцик­лотроны, в которых получают пучки протонов и других тяжелых ядерных час­тиц в диапазоне энергии 100—1000 МэВ. Протонные пучки получены и ис­пользуются в крупных физических центрах. Для дистанционной нейтронной терапии используют медицинские каналы циклотронов и ядерных реакторов.

Пучок электронов выходит из вакуумного окна ускорителя через колли­матор. В дополнение к этому коллиматору непосредственно около тела па­циента существует еще один коллиматор, так называемый аппликатор. Он состоит из набора диафрагм из материалов с малым атомным номером, что­бы уменьшить возникновение тормозного излучения. Аппликаторы имеют разные размеры для установки и ограничения поля облучения.

Электроны высоких энергий меньше рассеиваются в воздухе, чем фотон­ное излучение, однако требуют дополнительных средств для выравнивания интенсивности пучка в его сечении. К таковым относятся, например, вырав­нивающие и рассеивающие фольги из тантала и профилированного алюми­ния, которые помещают за первичным коллиматором.

Тормозное излучение генерируется при торможении быстрых электронов в мишени из материала с большим атомным номером. Пучок фотонов фор­мируется коллиматором, расположенным непосредственно за мишенью, и диафрагмой, которая ограничивает поле облучения. Средняя энергия фо­тонов максимальна в переднем направлении. Устанавливаются выравнива­ющие фильтры, так как мощность дозы в сечении пучка неоднородна.

В настоящее время созданы линейные ускорители с многолепестковы­ми коллиматорами для проведения конформного облучения (см. рис. 23 на цв. вклейке). Конформное облучение проводится с контролем положения коллиматоров и различных блоков с помощью компьютерного управления при создании фигурных полей сложной конфигурации. Конформное лу­чевое воздействие требует обязательного применения трехмерного плани­рования облучения (см. рис. 24 на цв. вклейке). Наличие многолепестково­го коллиматора с подвижными узкими лепестками позволяет блокировать часть радиационного пучка и формировать необходимое поле облучения, причем положение лепестков меняется под управлением компьютера. В сов­ременных установках можно осуществлять непрерывную регулировку фор­мы поля, то есть можно менять положение лепестков в процессе вращения пучка, чтобы сохранять облучаемый объем. С помощью этих ускорителей появилась возможность создавать максимальное по величине падение дозы на границе опухоли и окружающей здоровой ткани.

Дальнейшие разработки позволили выпустить ускорители для выполне­ния современного облучения с модулированной интенсивностью. Интен­сивно модулированное облучение — облучение, при котором существует воз­можность создавать не только радиационное поле любой требуемой формы, но и осуществлять облучение с различной интенсивностью во время одного и того же сеанса. Дальнейшие усовершенствования позволили осуществлять радиотерапию, корректируемую по изображениям. Созданы специальные ли­нейные ускорители, в которых планируется высокопрецизионное облуче­ние, при этом лучевое воздействие контролируется и корректируется в про­цессе сеанса путем осуществления флюороскопии, радиографии и объемной компьютерной томографии на конусном пучке. Все диагностические конст­рукции вмонтированы в линейный ускоритель.

Благодаря постоянно контролируемой позиции больного на лечебном столе линейного ускорителя электронов и контролю над смещением изо-дозного распределения на экране монитора уменьшается риск ошибок, свя­занных с движением опухоли во время дыхания и постоянно происходяще­го смещения ряда органов.

В России для проведения облучения больных используют различные виды ускорителей. Отечественный линейный ускоритель ЛУЭР-20 (НИ-ИФА, Санкт-Петербург) характеризуется граничной энергией тормозного излучения 6 и 18 MB и электронов 6—22 МэВ. НИИФА по лицензии фирмы Philips производит линейные ускорители СЛ-75-5МТ, которые укомплекто­ваны дозиметрическим оборудованием и планирующей компьютерной сис­темой. Существуют ускорители PRIMUS (Siemens), многолепестковый Л УЭ Clinac (Varian) и др. (см. рис. 25 на цв. вклейке).

Установки для адронной терапии. Первый в Советском Союзе медицинский протонный пучок с необходимыми для лучевой терапии параметрами был соз-



Глава 5


дан по предложению В. П. Джелепова на фазотроне 680 МэВ в Объединенном институте ядерных исследований в 1967г. Клинические исследования про­водились специалистами Института экспериментальной и клинической он­кологии АМН СССР. В конце 1985 г. в лаборатории ядерных проблем ОИЯИ было завершено создание шестикабииного клинико-физического комплекса, включающего в себя: три протонных канала медицинского назначения для облучения глубокозалегающих опухолей широкими и узкими протонными пучками различной энергии (от 100 до 660 МэВ); л-мезонный канал медицин­ского назначения для получения и использования в лучевой терапии интен­сивных пучков отрицательных л-мезонов с энергиями от 30 до 80 МэВ; канал сверхбыстрых нейтронов медицинского назначения (средняя энергия нейтро­нов в пучке около 350 МэВ) для облучения больших резистентных опухолей.

Центральным научно-исследовательским рентгенорадиологическим ин­ститутом и Петербургским институтом ядерной физики (ПИЯФ) РАН разра­ботан и реализован метод протонной стереотаксической терапии с исполь­зованием узкого пучка протонов высокой энергии (1000 МэВ) в сочетании с ротационной техникой облучения на синхроциклотроне (см. рис. 26 на цв. вклейке). Достоинством данного метода облучения «напролет» являет­ся возможность четкой локализации зоны облучения внутри объекта, под­вергаемого протонной терапии. При этом обеспечиваются резкие границы облучения и высокое отношение радиационной дозы в центре облучения к дозе на поверхности облучаемого объекта. Метод применяется при лече­нии различных заболеваний головного мозга.

В России в научных центрах Обнинска, Томска и Снежинска ведутся кли­нические испытания терапии быстрыми нейтронами. В Обнинске в рамках сотрудничества Физико-энергетического института и Медицинского радио­логического научного центра РАМН (МРНЦ РАМН) до 2002г. использовал­ся горизонтальный пучок реактора мощностью 6 МВт со средней энергией нейтронов около 1,0 МэВ. В настоящее время начато клиническое исполь­зование малогабаритного нейтронного генератора ИНГ-14.

В Томске на циклотроне У-120 НИИ ядерной физики сотрудниками НИИ онкологии используются быстрые нейтроны со средней энергией 6,3 МэВ. С 1999 г. проводится нейтронная терапия в Российском ядерном центре г. Снежинска с использованием нейтронного генератора НГ-12, дающего пу­чок нейтронов 12—14 МэВ.

 

 

5.2. АППАРАТЫ ДЛЯ КОНТАКТНОЙ ЛУЧЕВОЙ ТЕРАПИИ

 

Для контактной лучевой терапии, брахитерапии имеется серия шланговых аппаратов разной конструкции, позволяющих автоматизированным спо­собом размещать источники вблизи опухоли и осуществлять ее прицель­ное облучение: аппараты серии «Агат-В», «Агат-ВЗ», «Агат-ВУ», «Агам» с ис­точниками у-излучения 60Со (или 137Cs, l92lr), «Микроселектрон» (Nucletron) с источником 1921г, «Селектрон» с источником 137Cs, «Анет-В» с источником смешанного гамма-нейтронного излучения 252Cf (см. рис. 27 на цв. вклейке).

Это аппараты с полуавтоматическим многопозиционным статическим облу­чением одним источником, перемещающимся по заданной программе внут­ри эндостата. Например, аппарат гамма-терапевтический внутриполостной многоцелевой «Агам» с комплектом жестких (гинекологических, урологичес­ких, стоматологических) и гибких (желудочно-кишечных) эндостатов в двух вариантах применения — в защитной радиологической палате и каньоне.

Используются закрытые радиоактивные препараты, радионуклиды, по­мещенные в аппликаторы, которые вводят в полости. Аппликаторы мо­гут быть в виде резиновой трубки либо специальными металлическими или пластиковыми (см. рис. 28 на цв. вклейке). Существует специальная ра­диотерапевтическая техника для обеспечения автоматизированной подачи источника в эндостаты и их автоматический возврат в специальный контей­нер-хранилище по окончании сеанса облучения.

В комплект аппарата типа «Агат-ВУ» входят метрастаты небольшого диаметра — 0,5 см, что не только упрощает методику введения эндостатов, но и позволяет довольно точно формировать распределение дозы в соответс­твии с формой и размерами опухоли. В аппаратах типа «Агат-ВУ» три мало­габаритных источника высокой активности 60Со могут дискретно переме­щаться с шагом в 1 см по траекториям длиной 20см каждая. Использование малогабаритных источников приобретает важное значение при небольших объемах и сложных деформациях полости матки, так как позволяет избежать осложнений, например перфорации при инвазивных формах рака.

К преимуществам применения l37Cs гамма-терапевтического аппарата «Селектрон» средней мощности дозы (MDR — Middle Dose Rate) относится более длительный, чем у 60Со, период полураспада, что позволяет проводить облучение в условиях почти постоянной мощности дозы излучения. Сущес­твенным является также расширение возможностей широкого варьирова­ния пространственным дозным распределением благодаря наличию боль­шого числа излучателей сферической или малогабаритной линейной формы (0,5 см) и возможности чередования активных излучателей и неактивных имитаторов. В аппарате происходит пошаговое перемещение линейных ис­точников в диапазоне мощностей поглощенных доз 2,53—3,51 Гр/ч.

Внутриполостная лучевая терапия с использованием смешанного гам­ма-нейтронного излучения 252Cf на аппарате «Анет-В» высокой мощности дозы (HDR — High Dose Rate) расширила диапазон применения, в том числе для лечения радиорезистентных опухолей. Комплектация аппарата «Анет-В» метрастатами трехканального типа с использованием принципа диск­ретного перемещения трех источников радионуклида 252Cf позволяет фор­мировать суммарные изодозные распределения путем использования одной (с неравным временем экспонирования излучателя в определенных позици­ях), двумя, тремя или более траекториями перемещения источников излу­чения в соответствии с реальной длиной и формой полости матки и церви-кального канала. По мере регрессии опухоли под влиянием лучевой терапии и уменьшения длины полости матки и цервикального канала существует коррекция (уменьшение длины излучающих линий), что способствует сни­жению радиационного воздействия на окружающие нормальные органы.

Наличие системы компьютерного планирования контактной терапии позволяет проводить клинико-дозиметрический анализ для каждой конк­ретной ситуации с выбором дозного распределения, наиболее полно соот­ветствующего форме и протяженности первичного очага, что позволяет сни­жать интенсивность лучевого воздействия на окружающие органы.

Выбор режима фракционирования разовых суммарных очаговых доз при использовании источников средней (MDR) и высокой (HDR) активнос­ти осно

<== предыдущая лекция | следующая лекция ==>
Возможности препроцессора и его вызов | ОПРЕДЕЛЕНИЕ УДАРНОЙ ВЯЗКОСТИ МАТЕРИАЛОВ

Дата добавления: 2016-09-26; просмотров: 8297;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.032 сек.