Стимульно-реактивный подход к исследованию исполнительного действия

Функциональная структура исполнительных (перцептивно-моторных) действий

Понятие исполнительного действия

Работа всегда была и всегда остается жизненной функ­цией мышечной системы человека, как бы ни вытесняла современ­ная техника из промышленной жизни мускульный труд человека. Для решения задач управления и оптимизации исполнительной деятельности и задач проектирования ее новых видов и форм необ­ходимо провести ее анализ и выявить общие принципы развития и становления ее функциональной структуры.

Это необходимо для организации рационального обучения и тренировки, формирования совершенных навыков, организации режимов труда и отдыха, препятствующих утомлению.

Исполнительное или управляющее действие в эргономике — это приобретенное в результате обучения и повторения умение (навык) решать трудовую задачу, оперируя орудиями труда (ручной инструмент, органы управления и т. п.) с заданной точностью и скоростью.

Обычно исполнительные действия входят в качестве компонента в более широкие структуры трудовой деятельности и обеспечивают ее эффективное выполнение наряду с такими компо­нентами, как познавательные (когнитивные), включая и принятие решения.

В зависимости от вида трудовой деятельности удельный вес исполнительных действий может быть весьма различен. Эти действия могут совершаться либо эпизодически, либо занимать все рабочее время. Иными словами, в структуре деятельности в целом они могут занимать место основной цели либо выступать в качестве средства ее достижения, например передачи команды, реализации принятого решения и пр. В последнем случае исполни­тельные, моторные акты, как правило, просты и не требуют дли­тельного научения.

В тех случаях, когда исполнительные действия составляют основное содержание деятельности (работа с ручным инструментом, работа станочника, водительские профессии, работа телеграфиста, оператора ЭВМ, работа в режиме слежения) тре­буется длительное формирование соответствующих умений и навы­ков, обеспечивающих своевременное и точное выполнение трудовой деятельности.

Стимульно-реактивный подход к исследованию исполнительного действия

Для эргономического обеспечения этих видов исполнительных действий долгое время было достаточно традиционных представ­лений о моторном и сенсомоторном научении и представлений о двигательных навыках как об автоматизированных в значитель­ной степени стереотипных реакциях, возникающих при многократ­ном повторении сенсомоторных и кинестетических актов.

Формиро­вание навыков описывалось обычно в терминах стимулов и реакций, рефлексов, проб и ошибок. При повторении этих элемен­тов, когда это повторение достигает успеха либо подкрепляется, прежде отдельные реакции заменяются комплексами, изолирован­ные движения объединяются в целостные кинетические структуры, своего рода «моторные формы», или «кинетические мелодии».

Подобный «атомарный» или в более позднее время стимульно-реактивный подход, ориентированный на результат, эффект отдель­ного, сравнительно простого действия, длительное время состав­лял научные основания концепции «инженерного проектирования» методов работы, которая связана с именами Ф. Тейлора и Ф. Гилбрета.

Методическую основу такого проектирования составил моторно-временной анализ элементарных действий и операций.

Ф. Гилб­рет выдвинул идею универсальных микродвижений (терблигов), из комбинаций которых, отличающихся по составу и последова­тельности терблигов, должна состоять любая операция. Выделение терблигов положило начало симплификации[1] и стандартизации трудовых функций работающих.

Эта идея была использована на заводах Г. Форда, где путем тщательного проектирования весь трудовой процесс сборки был разбит на столь большое число мель­чайших операций, что автомобиль собирался, находясь в безоста­новочном движении. Форд стремился к тому, чтобы рабочий вы­полнял единственную работу единственным движением.

Ф. Гилбрет изучал движения с помощью хронометража, фото- и киносъемки, циклографии. Сформулированные им принципы экономии движе­ний позволяли отсеивать лишние и выбирать из всех возможных наиболее быстро осуществляемые и требующие минимальных уси­лий, а также добиваться сокращения перерывов между последо­вательными движениями.

Практические задачи проектирования работы положили начало изучению кинематических и динамичес­ких характеристик трудовых движений человека. Результаты и методы этих исследований, а также сформулированный Гилбретом принцип экономии рабочих движений применялись при решении задач организации рабочих мест, конструировании ручного инстру­мента, размещения органов управления и т. д.

Системы Ф. Тейлора и Ф. Гилбрета, несомненно, внесли суще­ственный вклад в изучение элементарных действий и операций. Однако с помощью моторно-временного анализа движений в том виде, в котором он был предложен, нельзя выявить структуру и механизмы целостной исполнительной деятельности человека.

Подобный инженерный подход к проектированию работы (при всей его первоначальной полезности) подвергается справедливой критике по ряду оснований. Очевидными следствиями предельной симплификации труда, сведения его к отдельным элементарным двигательным актам являются монотония и слабая удовлетворен­ность работой. И то и другое отрицательно сказывается на произ­водительности труда.

Что касается более сложных видов трудовой деятельности, то по отношению к ним этот подход уже исчерпал свои «оптимиза­ционные» возможности. А сложность исполнительных действий настолько возрастает, что стандартные моторные «формы» или даже кинетические «мелодии» не могут обеспечить ее эффективное выполнение.

Речь идет о том, что в условиях современного произ­водства стереотипия трудовых движений постепенно уступает мес­то выполнению целесообразных, разумных, произвольных исполни­тельных действий.

Во многих видах трудовой деятельности все чаще требуется защита от автоматизмов, от импульсивных, реф­лекторных реакций. Ошибочные действия, иногда приводящие к аварийным ситуациям, нередко происходят не потому, что чело­век не успел, а потому, что он поторопился.

Это справедливо и по отношению к станочнику, и по отношению к летчику. Современное механизированное и автоматизированное производство требует от человека выполнения не только заучен­ных, усвоенных действий, но и действий, так сказать, беспреце­дентных, которые необходимо не вспоминать, а построить в новой, неожиданно возникшей ситуации.

Все более распространенными являются случаи, когда при профессиональном обучении невоз­можно воспроизвести все существенные условия реального трудо­вого процесса и доучивание происходит при выполнении не учебного, а трудового, исполнительного действия.

Адаптация к реальным условиям особенно трудна, если выполнение действии требует совершенной сенсомоторной координации.

Ярким приме­ром подобных ситуаций может быть деятельность космонавтов, которым в условиях невесомости необходимо осуществлять стыков­ку, расстыковку, переходить из одного объекта в другой, выходить в открытый космос, оперировать ручным инструментом, совершать ручную посадку, т. е. оперировать органами управления в пере­менных условиях гравитации, трансформирующих привычные сен­сомоторные координации, силовой рисунок хорошо освоенных прежде движений. В частности, невесомость влияет не только на двигательную сферу, но может вызвать разнообразные неприятные ощущения, нестойкие пространственные иллюзии или даже явле­ния деперсонализации и дереализации восприятий субъекта.

Не меньшую психическую нагрузку вызывает необходимость осуществления исполнительных действий в условиях задержанной обратной связи о результативности выполненного действия.

К чис­лу таких действий относится управление луноходом, где задержка не превышает нескольких секунд, и управление супертанкером, где задержка соответствующих эволюций корабля после осущест­вления управляющего действия исчисляется несколькими минута­ми.

Появление целого ряда сравнительно новых видов деятель­ности, связанных с управлением космическими кораблями и станциями, дистанционным исследованием планет, манипуляциями радиоактивными элементами, управлением разнообразными дви­жущимися объектами, в том числе и роботами, привело к тому, что в эргономике в качестве специального объекта исследования выделилась деятельность оператора-манипулятора.

В этом виде деятельности главенствующую роль играют перцептивно-моторные координации и взаимодействия, хотя, разумеется, значительную роль играет также аппарат образного и понятийного мышления.

Исполнительные действия оператора-манипулятора реализуются посредством так называемых «регламентированных движений», требующих высокой не только пространственной, но и временной точности. Это означает, что с точки зрения эффективности их вы­полнения информативным показателем является не только конеч­ный результат действия (как в случае нажатия на кнопку, клави­шу, тумблер), но и текущие характеристики движений, определяю­щие динамику объекта управления.

Совершенные перцептивно-моторные координации необходимы и для выполнения многих технологических процессов. Ярким при­мером является деятельность по изготовлению и эксплуатации микроустройств. Размеры микрообъектов и необходимая плотность их компоновки предъявляют такие высокие требования к техноло­гии их изготовления, что производство приборов на их основе стало ювелирной работой.

Трудовая деятельность человека, заня­того в сфере сборки, например интегральных схем, осуществляется в условиях постоянного зрительного контроля, повышенной напря­женности, обусловленной необходимостью выполнять высокоточные и тонкокоординированные, прецизионные двигательные акты. Влияние этих факторов усугубляется еще и тем, что размеры микроустройств находятся на грани видимости невооруженным глазом и визуальный контроль технологических операций возмо­жен лишь при использовании увеличивающих оптических прибо­ров. Хорошо известно, что их использование имеет в качестве следствий закрепощенность позы, гипокинезию, суженное поле зрения и т. п.

 

Обслуживание многих станков требует высококоординированной работы обеих рук при непрерывном зрительном контроле. Временной интервал, в котором должны быть осуществлены коор­динированные движения, в некоторых случаях не должен превы­шать 60—80 мс. Необходимость оптимизации подобных видов деятельности привела к выделению в качестве специального объекта эргономического исследования деятельности оператора-технолога.

Приведенные примеры свидетельствуют о том, что «атомар­ный», стимульно-реактивный подход к исследованию и оптимиза­ции деятельности оператора-манипулятора и оператора-технолога не может удовлетворить современную эргономику.

Управление по открытому кон­туру регулирования

Двигательные акты, исполнительные действия вплетаются в ткань более широких структур деятельности, и успешность исполнительных действий должна оцениваться не сама по себе, а в контексте этих структур. Она зависит от того, насколько верно человек сориентировался в ситуации, т. е. построил ли человек правильный образ этой ситуации и нашел ли он, порой, единственно возможный способ действия.

Формирование образа ситуации, создание программы разум­ных действий, их точная и своевременная реализация, контроль за их эффективностью — вот проблемы, которые возникли перед современной эргономикой, как и перед комплексом смежных с ней наук: биомеханикой, физиологией и психологией, которые издавна изучали организацию, построение, управление движениями и дей­ствиями человека.

Как практические задачи, возникшие перед этими науками, так и логика их собственного развития требуют формулирования но­вых подходов к изучению исполнительных действий. В противовес атомарно-рефлекторным подходам, ориентированным на задание, результат, эффект и т. п., исследователи разрабатывают струк­турный, целостный, деятельностный подход, ориентированный не только на усвоение, но и на построение движений, действий, мо­торных программ и схем.

Тщательный анализ рисунка даже многократно повторяющихся в одной и той же ситуации движений свидетельствует об их уни­кальности и своеобразии. Детальный анализ моторного акта показывает, что его биодинамическая ткань неповторима как отпе­чаток пальца. Это означает, что строится не только образ ситуации и адекватная ей моторная схема, но что на основе этой схемы строится (а не просто повторяется) каждый живой моторный акт.

Результаты и сам ход этой работы не вытекают однозначно из структуры внешнего стимульного подкрепления. В этом смысле объяснение происходящего движения по схеме «стимул-реакция» не соответствует существу дела. Исследователям предстоит еще разработать понятия, относящиеся к указанной выше работе по построению пространственного моторного действия.

Двигательное действие, рассматриваемое как необходимый компонент деятельности, должно обязательно соотноситься с ее когнитивными и личностными компонентами, такими, например, как образ и цель. При этом, как указывалось выше, и сама дея­тельность в целом и все ее компоненты обязательно характери­зуются предметно-смысловыми чертами и пространственно-времен­ной определенностью. Истоки этого подхода восходят к именам И. М. Сеченова и Ч. Шеррингтона.

И. М. Сеченов неоднократно подчеркивал, что «чувствование повсюду имеет значение регулятора движения, другими словами, первое вызывает последнее и видоизменяет его по силе и направ­лению».

Интересно и то, что Сеченов не ограни­чивал задачу физиологии и психологии изучением отдельных дви­жений, а говорил о необходимости изучения той области явлений, в которой «чувствование превращается в повод и цель, а движение — в действие».

 

Каков механизм регу­ляции движений чувствованиями?

Возможность такой регуляции обеспечена уже тем, что мышца, представляющая собой «двойст­венный орган, наш рабочий орган и вместе с тем исконный, перво­начальный орган чувств, воспитавший в порядке своих свойств все другие органы чувств, окрашивает все наши представления об окружающем мире в образах движения». Более того, Сеченов писал, что мышца дала нам наши представления о пространстве, времени, о числе, о счете и т. д.

Все это может быть возможным только при условии, что сами движения и дей­ствия не являются лишь элементарными и утилитарными актами исполнения, а осуществляют также познавательные, когнитивные функции и функции экспрессивные. Последние отчетливо реализу­ются не только в движениях, но в позно-тонических (рефлексивных) компонентах действия, являющихся носителями его личностно-смыслового со­держания.

Различие атомарно-рефлекторного и целостного подходов за­фиксировано и в языке описания двигательного поведения. Для первого преимущественно использовались такие термины, как ре­актология, рефлексология, для второго — психомоторика, психо­нервная деятельность, психическая деятельность и т. п.

С тех пор как П. М. Сеченов и Ч. Шеррингтон психологизи­ровали трактовку двигательного поведения, накоплены многочис­ленные данные о решающей роли сенсорных процессов в управле­нии человеческими движениями.

Анализируя строение анатоми­ческого аппарата, обеспечивающего движения высших животных и человека, А. А. Ухтомский отмечает его своеобразие по сравне­нию с искусственными механическими устройствами, характери­зующееся значительно большим количеством степеней свободы. Ни костно-мышечный аппарат в целом, ни какая-либо его часть не составляет готового механизма для выполнения какого-либо определенного целесообразного акта, а представляет собой лишь совокупность известных анатомических компонентов, необходимых для создания такового. Особенности строения опорно-двигатель­ного аппарата обусловливают пластичность поведения высших животных и человека и вместе с тем делают задачу управления этим поведением необычайно сложной и трудной. Поскольку управление предполагает ограничение степеней свободы, а в са­мом устройстве исполнительных механизмов у живых организмов такого рода ограничения практически отсутствуют, функции регу­ляции выполняемых действий должны взять на себя центральные механизмы.

Рассмотрим кратко эволюцию представлений и совре­менные взгляды на механизмы управления движениями.

Первоначально предполагалось, что центральные механизмы могут выполнить эту функцию, используя жесткие шаблоны, кото­рые заранее предопределяют характер и последовательность тре­буемых движений. Р. Вудвортс для такого способа построе­ния движений ввел термин «центральное», или «моторное», программирование. Он доказывал наличие моторных программ, изучая быстрые произвольные движения человека.

Анализ кинематических характеристик точных движений руки привел его к заключению, что существует фаза движения, незави­симая от зрительной обратной связи, фаза, определяемая перво­начальной программой.

Наряду с этой фазой существует и вторая фаза, совершаемая с учетом зрительной обратной связи и обеспе­чивающая точностные характеристики движения.

Таким образом, Вудвортс описал способы управления движением, получившие позже наименование управления по открытому и закрытому кон­турам регулирования.

К. Лешли был, видимо, одним из первых, кто отчетливо сфор­мулировал концепцию центральных моторных программ и экспе­риментально доказал, что выработка навыка представляет собой центрально-организованный процесс, в реализации которого про-перцептивные механизмы могут не играть существенной роли.

Поиски доказательств в пользу откры­того контура шли по пути изучения быстрых баллистических дви­жений и блокирования каналов обратной связи, функционирующих при выполнении двигательных актов. Сторонники концепции мо­торного программирования и открытого контура оставляют за афферентацией[2] лишь пусковые функции и модулирующие влияния. Однако до настоящего времени не получено решающих доказа­тельств того, что произвольное движение человека может осуще­ствляться только как результат центрально-организованных нервных команд, которые структурируются перед началом движе­ния и позволяют осуществлять движение при отсутствии перифе­рической обратной связи.

Главные недостатки систем открытого контура состоят в том, что они не обладают механизмами обратной связи для исправле­ния ошибок, возникающих как вследствие свойств их входов, так и вследствие трансформации сигналов внутри системы. Этот тип систем обладает слабыми компенсаторными возможностями.

В рамках концепции открытого контура были детально разра­ботаны представления о моторных программах. Понятие моторного программирования означает, что наборы моторных команд, как врожденных, так и заученных, хранятся в центральной нервной системе и могут вызываться и синтезироваться в желаемое движе­ние. Моторная программа — это тщательно скоординированный по­рядок синергии[3] (иногда их называют субрутинами, или субрежи­мами) , которые вместе охватывают требуемое движение и которые не зависят от обратной связи.

Независимо от отношения представителей концепции открытого контура к участию в регуляции движений обратной связи ими развиваются интересные представления об иерархии моторных программ, о существовании обобщенных программ, программ-схем, нижние звенья которых освобождают основную программу от обременительных вычислений.

Важное значение имеют также предположения о связи программ с мотивами и целями, которые трансформируются в некоторое внутреннее представление субъекта о желаемом, требуемом движении или действии. Другими слова­ми, моторные программы более тесно связываются с образом ситуации, с образом действия, не только с набором команд, хра­нящихся в нервной системе.

Концепция открытого контура регу­лирования с минимальными оговорками и ограничениями приме­няется для объяснения механизмов движений глаз человека. В многочисленных исследованиях установлена почти однозначная зависимость между скоростью скачка на начальном этапе движе­ния и конечной амплитудой скачка. Это означает, что уже до на­чала движения запрограммирована скорость саккады[4]. На основа­нии электрофизиологических исследований сделан вывод о том, что управление саккадическими движениями в одном фиксированном направлении сводится к определению временного отрезка, в тече­ние которого прилагается постоянная сила, сокращающая прямые мышцы глаза.

 

Управление по закрытому кон­туру регулирования

Зачатки противоположных идей относительно кольцевого или замкнутого (закрытого) контура регуляции движений мы находим у В. Джемса, Ч. Шеррингтона и др.

Джемс предположил, что периферическая обратная связь от одной части движения вызывает к действию следующую, и выдви­нул гипотезу «цепных рефлексов», против которой позже выступил Лешли. В соответствии с теорией закрытого контура предпола­гается, что ответ не просто запускается рецепторикой, но и управ­ляется ею.

Управление движением по «закрытому» контуру предполагает передачу с помощью обратных связей информации о соответствии движения требуемой цели и выработку на основе этого новых управляющих команд. Обратная связь выполняет две функции: с ее помощью определяются пространственные характеристики цели, необходимые для составления программы баллистического движения, а также осуществляется соотнесение результатов вы­полнения этих программ с истинным положением цели, служащее для уточнения программ последующих движений. Наиболее пол­ная аргументация того, что жесткое программирование не может обеспечить целесообразный эффект движения, дана Н. А. Берн штейном.

Теория Н. А. Бернштейна охватывает широкий класс функцио­нально-различных движений и представляет собой общую теорию поуровневого управления и построения движений человека. Эта теория включает в себя три фундаментальных принципа: централь­ного программирования, сенсорных коррекций и уровневой орга­низации движений. Принцип координирования движений изложен им в безупречной с точки зрения современной теории автомати­ческого регулирования форме: «... как только орган, находящийся под действием внешних и реактивных сил, плюс еще какая-то до­бавка внутренних, мышечных сил, отклонится в своем результирующем движении от того, что входит в намерения центральной нервной системы, эта последняя получит исчерпывающую сигнали­зацию об этом отклонении, достаточную для того, чтобы внести в эффекторный процесс собственные адекватные поправки. Весь изложенный принцип координирования заслуживает поэтому наз­вания принципа сенсорных коррекций» [6, с. 28].

Н. А. Бернштейн долгое время решительно отвергал всякую возможность управления движением по разомкнутой схеме. Одна­ко позже он отошел от такой крайней точки зрения и допустил возможность того, что в некоторых элементарных процессах дуга не замыкается в рефлекторное кольцо либо из-за кратковремен­ности акта, либо вследствие его крайней элементарности.

Сенсорные коррекции осуществляются в общем случае всеми имеющимися в распоряжении организма рецепторными аппарата­ми. В частных случаях некоторые из обратных связей могут не участвовать в управлении движением. Первичные сигналы рецеп­торов предварительно подвергаются сложной обработке и «пере­шифровке», необходимой, например, для того, чтобы их можно было сличить с проектом движения, построенным на языке прост­ранственно-кинематических представлений. Полученные в результа­те обработки «синтезы», составленные из сигналов всех видов обратных связей, участвующих в управлении данным движением, служат для сенсорных коррекций.

Понятие о сенсорном синтезе играет в модели Бернштейна фундаментальную роль. Состав образующих его афферентаций, т. е. обратных связей, и принцип их объединения служат главным критерием, отличающим один уровень построения движения от другого.

Каждая двигательная задача находит себе в зависимости от своего содержания и смысловой структуры тот или иной ведущий уровень. Уровни различаются между собой не только видом сен­сорного синтеза, но и анатомическим субстратом, т. е. совокуп­ностью органов нервной системы, без которых осуществление функции этого уровня невозможно.

В зависимости от цели и смыслового содержания двигательного акта один из уровней берет на себя роль ведущего, координирую­щего действия нижележащих фоновых уровней. Во всяком движе­нии осознается только ведущий уровень.

Выработка двигательного навыка — это процесс формирования в ходе обучения и тренировки уровневого состава движения, выделения ведущего уровня и сра­батывания между собой всех вовлеченных в управление уровней.

Необходимым условием успешного изучения двигательных ак­тов является создание адекватного метода, позволяющего регист­рировать и анализировать пространственно-временную развертку движения, весь ход двигательного акта «по всему моторному аппа­рату тела».

В исследованиях исполнительной деятельности, на­правленных на выявление объективных индикаторов процесса формирования сенсомоторного образа пространства и структуры действия, использовался микроструктурный метод анализа, суть которого состоит в выделении быстротекущих компонентов цело­стных психических актов и в анализе их взаимоотношения. Исполь­зование этого метода при исследовании произвольных простран­ственных действий позволило вскрыть структуру пространственно­го действия; проследить динамику ее становления и развития в различных условиях протекания действий; выделить ряд ком­понентов-стадий: формирования программы, реализации, контроля и коррекций, составляющих структуру действия, проследить ди­намику их развития, соотношения их на разных этапах освоения действия, а также изменения, происходящие внутри выделенных компонентов целостного действия.

Экспериментальная ситуация предусматривала исследование формирования инструментального пространственного действия в различных условиях.

· В стабильных условиях маршруты требуе­мого движения были одинаковой величины и сложности.

· В дина­мических условиях маршруты отличались числом опорных элемен­тов и числом пространственных составляющих движения.

· В условиях инверсии вводилось рассогласование (полное или частичное) между перцептивным и моторным полями. Инверсия вводилась после выработки навыка в условиях нормы.

В результате исследования было обнаружено, что в процессе формирования навыка (стабильные условия, норма) наблюдается сложная динамика во взаимоотношениях между отдельными ста­диями целостного действия.

Во-первых, в процессе освоения пpo­странственного действия наблюдается уменьшение времени каждой выделенной стадии; во-вторых, сокращение времени в каждой ста­дии происходит неравномерно, в-третьих, по мере тренировки проис­ходит перераспределение времени между выделенными стадиями.

Неравномерность темпа сокращения времени в выделенных ста­диях свидетельствует о том, что все компоненты целостного дей­ствия совершенствуются неодинаково.

В исследовании обнаружена последовательность формирования компонентов пространственного действия. Быстрее всего складывается стадия формирования мо­торных программ, за ней следует стадия контроля и коррекций, обе они формируются на фоне постепенного уменьшения времени, которое занимает стадия реализации моторных программ.

Лишь после того как оба когнитивных компонента сформировались, видимо, возможно, последнее сокращение времени выполнения действия в целом. И это сокращение происходит за счет его испол­нительной части. Перераспределение времени между стадиями внутри целостного действия на разных этапах формирования сви­детельствует о том, что каждое новое упражнение — это новый процесс решения задачи, процесс изменения и совершенствования средств и способов ее решения.

Знание функциональной структуры действия, исследование динамики ее формирования и становления, установление взаимо­связей и взаимоотношений между компонентами исследуемого объекта открывают возможности контроля за процессом форми­рования и оптимизации движений и действий.

Изменение удельного веса компонентов в структуре действия как в процессе его формирования, так и под влиянием тех или иных изменений, внесенных в условия его протекания, свидетель­ствует о том, что превалирование того или иного типа регулиро­вания двигательными актами зависит в основном от условий, в которых действие протекает, и от степени освоенности, обученности. На рис. представлены удельные веса компонентов целостного действия в различных условиях его протекания и на разных этапах его формирования.

а – в стабильных условиях; б – в динамических условиях; в – в условиях инверсии     1 – начало обучения 2- конец обучения

 

Соотношение компонентов функциональной структуры целост­ного действия в начале его формирования сходно независимо от того, в каких условиях протекает действие. В конце формирования сходное соотношение компонентов в структуре действия отмечается у действий, формируемых в динамических и инвертированных условиях; действие, формируемое в условиях нормы, имеет совер­шенно отличную от них структуру.

Ситуация инверсии и динамики и ситуация нормы могут быть сопоставлены в терминах открыто­го и закрытого контура управления.

В условиях нормы после дли­тельной тренировки у испытуемых формировались симультанный образ ситуации и программа, организующая моторный ответ, т. е. значительная часть действия осуществлялась как бы по открыто­му контуру, что подтверждается значительным удельным весом стадии формирования программ и сравнительно небольшим весом стадии контроля и коррекций.

В ситуации инверсии[5] и в динами­ческих условиях предъявления информации в течение проведенных экспериментальных серий сохранилась регуляция по принципу замкнутого контура, о чем свидетельствует удельный вес стадии контроля и коррекций, составляющей примерно 50% от целостного действия.

К настоящему времени предложено большое число разнообраз­ных вариантов теорий закрытого контура регулирования, описы­вающих более или менее сложные акты человеческого поведения и деятельности. Эти теории относятся к таким процессам, как дис­кретные и непрерывные двигательные процессы, перцептивно-мо­торные навыки, речевое поведение и т. д.

В настоящее время созрели как теоре­тические, так и методические предпосылки для преодоления оппозиции между теориями открытого и закрытого контура. Тео­ретические предпосылки состоят в том, что во многих областях исследования психической деятельности успешно преодолевается технологический, инженерный подход, в том числе и в его совре­менном информационно-кибернетическом варианте.

Методические предпосылки состоят в том, что благодаря использованию ЭВМ на линии эксперимента появились принципиально новые возможности регистрации и анализа движений.

В качестве примера приведем исследование, предметом которого был анализ соотношений когнитивных и исполнительных компонентов инструментального действия.

Экспериментальная си­туация предусматривала быстрое и точное горизонтальное движе­ние к цели, представляющей собой све­товой квадрат, равный по размеру управ­ляемому квадрату и появляющийся справа и слева от стартовой позиции на горизонтальной оси телевизионного индикатора по программе от ЭВМ. Реги­стрировались временные и скоростные характеристики движения.

На рисунке 12 представлен образец записи перехода на цель, включающий в себя запись параметрического графи­ка зависимости пути от времени, данные по скорости и ускорению совершаемого движения. Данный вид кривых S (t), V(t), A(t ) описывает движения, направ­ленные на быстрое и точное совмещение управляемого пятна с целью.

Скорость движения возрастает до середины пути, а затем начинает монотонно падать вплоть до начала корректирующих дви­жений, подводящих управляемое пятно к цели. Изменение скорости движения, в свою очередь, вызвано тем, что усилие, прилагаемое для перемещения руки в пространстве и соответственно орудия, управляемого ею, изменяется во вре­мени.

Характер изменения этого усилия описывается изменением ускорения движения во времени A(t), где можно выделить ускоренную часть, соответствующую началь­ной части движения, когда скорость нарастает от 0 до макси­мума, и части движения, когда ускорение имеет отрицательный знак.

Одновременно для каждой группы реализаций (в зависимо­сти от амплитуды перемещения) был вычислен средний квадратич­ный разброс (а), т. е. определены участки максимального и ми­нимального отклонения от идеальной кривой.

Как показал анализ, максимальное отклонение на кривой (а) отмечено в се­редине пути там, где, как видно на кривой скорости, она уже достигла своего максимума. Иначе говоря, разброс ми­нимален в начале и конце пути.

Отсюда можно предположить. что движения в самом начале своего пути, соответствующие по времени фазе >нарастания ускорения и характеризующиеся мини­мальным разбросом (а), совершаются по четко отработанной программе для данной группы движений.

Эти данные согласуются с данными представителей програм­много или открытого типа управления движениями, постулирую­щих наличие набора моторных программ, которые могут синте­зироваться в желаемое движение, охватить его целиком и которые не зависят от обратной афферентации.

Результаты проведенного исследования свидетельствуют о наличии программного типа управления лишь для начальной части движения, составляющей для данной экспериментальной ситуации и данной группы движе­ний 125—150 мс. Как было .показано, средний квадратичный раз­брос увеличивается, доходя до своего максимума на участке пути, соответствующему максимальному значению скорости, охватываю­щей на кривой S (t) интервал, равный 225—275 мс.

Вследствие большого количества степеней свободы кинематических цепей человеческого тела, действия реактивных и внешних сил и других причин никакая, даже наиболее точно дозированная, система пус­ковых афферентных импульсов не может однозначно определить требуемое движение. Но движение все-таки совершается, и доста­точно точно, и совершается оно с помощью внесения поправок по ходу выполнения движения, на основе эфферентной сигнализации, поступающей в процессе двигательного акта, путем «сенсорной коррекции».

Однако одних импульсов, поступающих в нервную систему по ходу выполнения движения, еще недостаточно для управления действием, они должны сопоставляться с заданными, запрограммированными их значениями, что и дает возможность вносить поправки по ходу выполнения действия; на основе такого сличения и производится коррекция двигательного акта. Иначе говоря, имеются основания для объединения в одном двигательном акте двух типов управления: программного и на основе обратной афферентации, т. е. закрытого типа управления.

Сами представления о моторной программе и об обратной связи, являющиеся центральными в этих теориях, тоже нуждаются в объяснении, тем более, что они рассматриваются в этих теориях преимущественно со стороны их физиологических механизмов.

А между тем современные исследования открывают в человечес­ком действии такие осложнения, вариации и направления, о кото­рых не знают биомеханика и физиология, по крайней мере в их нынешнем состоянии.

Главное осложнение состоит, видимо, в том, что как программа, так и контроль являются производными о

<== предыдущая лекция | следующая лекция ==>
Международные организации в области охраны окружающей среды. | Методика анализа пространственной компоновки рабочего места

Дата добавления: 2022-05-27; просмотров: 81;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.032 сек.