СЕРДЕЧНОСОСУДИСТАЯ СИСТЕМА


Доставка необходимых веществ клеткам и удаление от них продуктов жизнедеятельности, обеспечивается кровью, циркулирующей по замкнутой системе полостей и сосудов. Большой круг кровообращения начинается в левом желудочке сердца. Кровь из него проходит аорту, артерии и капилляры всех органов (там отдает кислород и питательные вещества, но забирает углекислоту и продукты метаболизма), а затем через вены и поступает в правое предсердие. Малый круг кровообращения начинается в правом желудочке сердца. Отсюда кровь направляется в легкие, там освобождается от избытка углекислоты, насыщается кислородом и поступает в левое предсердие.

ФИЗИОЛОГИЯ СЕРДЦА

Сердечная мышца обладает автоматией (способностью ритмически возбуждаться под влиянием возникающих в нем импульсов), возбудимостью (способностью приходить в состояние возбуждения под действием раздражителя), проводимостью (способностью проводить возбуждение) и сократимостью (способностью изменять свою форму и величину).

Клетки с наибольшей способностью к автоматии образуют проводящую систему сердца (рис. 15).

Ее основными частями являются: синоатриальный (в стенке правого предсердия) и атриовентрикулярный (на границе предсердий и желудочков) узлы, пучок Гиса, его правая и левая ножки и волокна Пуркинье (заканчиваются на мышечных клетках сердца).

В обычных условиях водителем ритма является синоатриальный узел. Частота разрядов в нем составляет около 70 в 1 минуту. В атриовентрикулярном узле (водитель ритма второго порядка) - 40-50 в 1 минуту. Он задает ритм, если не возбуждается импульсами из синоатриального узла. При отсутствии сигналов от вышерасположенных водителей ритма, более редкие импульсы вырабатываются в пучке Гисса, его ножках и волокнах Пуркинье.

Рис. 15.Проводящая система сердца

Между клетками миокарда имеются контакты с низким электрическим сопротивлением и возбуждение, возникшее в одной клетке сердца, проводится на другие. Поэтому мышца сердца отвечает на раздражения в соответствии с законом «все или ничего» - всё сердце расслаблено или сокращается с максимальной силой. Поскольку скорость прохождения возбуждения через атриовентрикулярный узел самая низкая, предсердия успевают сократиться в то время, когда желудочки еще расслаблены.

Потенциал действия кардиомиоцитов (рис. 16а.) начинается фазой деполяризации (обусловлена повышением проницаемости мембран для Na+), которая проявляется быстрым изменением мембранного потенциал от -90 мВ до +30 мВ. Затем начинается выход из клетки ионов калия и практически в это же время, в клетки устремляются ионы кальция. Это приводит к развитию плато. Быстрая реполяризация начинается только после закрытия кальциевых каналов. В конце периода реполяризации все ионы, при участии насосов, возвращаются на свои места и потенциал покоя восстанавливается.

а Рис. 16. Фазы потенциала действия (а) и изменения возбудимости (б) клетки миокарда
б

Общая продолжительность потенциала действия в кардиомиоците в среднем составляет 300 мс и по длительности практически совпадает с периодом сокращения сердечной мышцы. Ее возбудимость (рис. 16б.) в фазу абсолютной рефрактерности (в течение 270 мс) отсутствует, а в фазу относительной рефрактерности (длится до 30 мс) – снижена. Это исключает тетанус, и сердечная мышца работает только в режиме одиночных сокращений.

При работе сердца человеческое ухо, через фонендоскоп, может различать 2 тона. I – систолический тон (соответствует моменту закрытия атриовентрикулярных клапанов) и II - диастолический тон (закрытие полулунных клапанов).

За одну систолу сердце выбрасывает в аорту систолический объем (СО) крови. Умножив его на число сердечных сокращений (ЧСС) в 1 мин, получим минутный объем крови (МОК), т.е. количество крови, выбрасываемое сердцем за 1 мин.

КРОВЕНОСНЫЕ СОСУДЫ

По функциям сосуды делят на:

1. Амортизирующие (аорта и наиболее крупные артерии). Они сглаживают (амортизируют) подъем давления во время систолы и его падение во время диастолы.

2. Резистивные или сосуды сопротивления (средние и мелкие артерии, артериолы и венулы). Они создают большое сопротивление кровотоку, регулируют кровенаполнение капилляров и предотвращают пульсирующее движение крови в них.

3. Обменные (капилляры) обеспечивают обменные процессы между кровью и тканевой жидкостью.

4. Емкостные (вены) - способны накапливать 70-80% всей крови.

5. Артериовенозные анастомозы (шунты) соединяют артерии и вены, минуя капилляры.

6. Сосуды возврата крови к сердцу – крупные вены. Основным условием кровотока является создаваемый сердцем градиент давления в сосудистой системе. Кровь течет из области высокого давления в область низкого и преодолевает сопротивление, создаваемое трением частиц крови друг о друга (вязкостью) и о стенки сосуда. Количество крови, протекающей через поперечное сечение сосуда за единицу времени (объемная скорость кровотока) в связи с замкнутостью кровеносной системы во всех ее отделах одинакова. В отличие от объемной, линейная скорость (расстояние, пройденное частицей крови за единицу времени) изменяется. Самая большая линейная скорость кровотока в аорте - 50-60 см/с, а в капиллярах наименьшая - 0,5 мм/с. Время кругооборота крови (время, в течение которого частица крови пройдет оба круга кровообращения) равно 20-25 с.

Важнейшим гемодинамическим показателем является артериальное давление (АД). Во время систолы АД повышается (систолическое давление), при диастоле - снижается (диастолическое давление). Разницу систолического и диастолического давлений составляет пульсовое давление. АД зависит от работы сердца, количества циркулирующей крови, эластичности сосудов (потеря эластичности повышает АД), сопротивления сосудов току крови.

Физическая работа, прием пищи и эмоции повышают систолическое давление. Во время сна оно снижается. В вертикальном положении давление в сосудах, расположенных ниже сердца, больше чем давление в сосудах выше сердца.

Артериальный пульс - это ритмические колебания стенки артерии. Деятельность сердца создает пульсовую волну, которая распространяется по артериям быстрее крови (8-12 м/с). Артериальный пульс отражает состояние сердечнососудистой системы и оценивается по частоте, ритму, быстроте, амплитуде, напряжению и форме. Пульс может быть ритмичным и аритмичным. Быстрота пульса отражает скорость изменения давления в артерии. Амплитуда пульса зависит от систолического объема сердца и эластичности сосудов: чем они эластичнее, тем меньше амплитуда пульса. Напряжение пульса определяется по сопротивлению стенки артерии нажиму. Различают твердый и мягкий пульс. При высоком АД пульс твердый, «проволочный».

Термином «микроциркуляция» обозначают ток крови и лимфы по мельчайшим сосудам, а также транспорт веществ между микрососудами и межклеточным пространством.

В состав микроциркуляторного русла входят: артериолы, прекапиллярные сфинктеры, капилляры, венулы и артериовенозные анастомозы. К кровеносным микрососудам примыкают лимфатические капилляры. Артериолы создают значительное сопротивление кровотоку, а изменения их просвета регулирует АД. Каждая артериола заканчивается сфинктером. От него зависит число открытых капилляров (в покое функционируют не более трети из них). Все вместе взятые капилляры имеют огромную обменную поверхность. Это, в сочетании с низкой скоростью капиллярного кровотока способствует переходу веществ из сосудистого русла в ткани и обратно.

Венулы являются звеном емкостной части микроциркуляторного русла.

Артериовенозные анастомозы (их много в коже, легких, почках, печени) обеспечивают: перераспределение крови в работающем органе, поддержание постоянной температуры в определенном участке тела и увеличение притока крови к сердцу.

В переходе веществ через сосудистую стенку участвуют: фильтрация, реабсорбция, диффузия и микропиноцитоз. Фильтрация и реабсорбция основаны на разности гидростатического и онкотического давлений в просвете капилляра и окружающих его тканях. Кровь поступает в капилляр под гидростатическим давлением около 30 мм рт.ст. В межклеточной жидкости оно составляет около 3 мм рт.ст. Онкотическое давление плазмы крови равно 25 мм рт.ст., а межклеточной жидкости – около 4 мм рт.ст. В артериальном конце капилляра способствует фильтрации гидростатическое давление (30 мм рт.ст. - 3 мм рт.ст. = 27 мм рт.ст.). В венозной части капилляра уже онкотическое давление способствует переходу воды из межтканевого пространства в капилляр (25 мм рт.ст. - 4 мм рт.ст. = 21 мм рт.ст.). Около 10% вышедшей из крови воды идет на образование лимфы.

Движению крови в венах способствуют: градиент давления в венозной системе, остаточная сила сердца, присасывающее действие предсердий, отрицательное давление в плевральной полости (во время вдоха растет приток крови к полым венам), наличие в венах клапанов (препятствуют оттоку крови) и «мышечный насос» (сдавливание сокращающимися мышцами, проходящих в их толще вен). В периферических венах пульс отсутствует, но он есть в венах, расположенных около сердца и отражает изменения давления в правом предсердии.

Работа сердца регулируется внутри- и внесердечными (экстракардиальными) механизмами.

Внутриклеточные механизмы усиливают синтез сократительных белков в сердце. Кроме того, сила сердечных сокращений растет: при растяжении миокарда («закон сердца» или закон Франка-Старлинга), при увеличении частоты сокращений сердца (закон Боудича) и повышении давления в аорте (феномен Анрепа).

Эстракардиальные механизмы. Вегетативная рефлекторная дуга начинается от механорецепторов предсердий, реагирующих на тонус мускулатуры. От этих рецепторов идут афферентные пути в продолговатый и спинной мозг. В продолговатом мозге они связаны с парасимпатическим отделом сердечного центра (снижает возбудимость водителей ритма). Симпатические нервы (из грудных сегментов спинного мозга) повышают силу, возбудимость и проводимость сердечной мышцы, а также увеличивают частоту сокращений миокарда. Среди гуморальных факторов, положительное влияние на сердце отмечено у адреналина. Ионы кальция увеличивают возбудимость сердечной мышцы, а калия - снижают ее.

Механизмы регуляции сосудистого тонуса делят на местные (периферические) и центральные. Местные механизмы регулируют кровоток в отдельном участке организма. Даже денервированный сосуд сохраняет тонус своей стенки, который регулируется химическими веществами (продуктами метаболизма) и физическими факторами (например, растяжение сосуда). К важнейшим сосудосуживающим веществам относят - адреналин и норадреналин. Серотонин суживает сосуд в месте повреждения и тем самым облегчает остановку кровотечения. Гистамин (выделяется базофилами и тучными клетками при повреждении тканей) и брадикинин расширяют артериолы и венулы. Продукты метаболизма (например, молочная кислота, аденозин и углекислый газ) вызывают местное расширение сосудов.

Рефлекторная регуляция кровообращения направлена на поддержание определенного уровня артериального давления. Это обеспечивается ЦНС через вегетативные нервы (симпатические нервы повышают артериальное давление, а парасимпатические - снижают) и регуляцию выработки гормонов.

Вверхних грудных сегментах спинного мозга (спинальный уровень) находится центр, стимулирующий сердечную деятельность, ав шейных – центр, повышающий тонус сосудов.

Бульбарный уровень. В продолговатом мозге находится главный (ингибирующий) центр регуляции сердечной деятельности и главный сосудодвигательный центр. Они непосредственно тормозят деятельность сердца и снижают артериальное давление.

Примерами рефлекторной регуляции деятельности сердца и тонуса сосудов могут служить реакции на раздражение барорецепторов в предсердии, дуге аорты и в каротидном синусе (место разделения сонной артерии на внутреннюю и наружную ветви). Возбуждение рецепторов переполненного кровью правого предсердия, стимулирует симпатические центры спинного мозга, и сердце выбрасывает больше крови (предсердие освобождается от избытка крови). Повышение АД в аорте и каротидном синусе также возбуждает барорецепторы. От них сигналы идут в продолговатый мозг, который через парасимпатические нервы тормозит работу сердцу, и расширяют сосуды (давление уменьшается). При снижении артериального давления эти же рецепторы и центры, но уже через спинной мозг и симпатические нервы - повышают АД. Корковый и гипоталамический уровни обеспечивают реакции сердца и сосудов преимущественно на внешние раздражения. Например, болевые раздражения кожи и события, вызывающие эмоции.

ЛИМФАТИЧЕСКАЯ СИСТЕМА

Лимфа образуется в области лимфатических капилляров всех тканей, за исключением кожи, ЦНС, паренхимы селезенки, хрящей, плаценты, хрусталика и оболочек глазного яблока. Через стенку лимфатического капилляра проходят фрагменты разрушенных клеток, белки и скапливающиеся в межклеточных пространствах низкомолекулярные вещества. Далее капилляры объединяются в сосуды, которые пронизывают лимфатические узлы. Затем очищенная в узлах лимфа поступает в крупные вены. Лимфатические сосуды, благодаря клапанам, собственным сокращениям и работе мышц прилегающих тканей, проводят лимфу в заданном направлении.

Лимфатическая система обеспечивает:

1. Возврат белков, электролитов и воды из межклеточных пространств в кровь.

2. Выведение из тканей в лимфатические узлы крупномолекулярных соединений и погибших клеток (резорбтивная функция).

3. Задержка инородных частиц, микроорганизмов и опухолевых клеток лимфоузлами (барьерная функция).

4. Образование в лимфоузлах клеток, обеспечивающих иммунные реакции (иммунобиологическая функция).

ФИЗИОЛОГИЯ ДЫХАНИЯ

Основным источником энергии для человека является окисление органических веществ. Для этого, даже в покое, взрослый человек должен получать за 1 минуту не менее 250 мл молекулярного кислорода из окружающей среды и выделить образующийся при окислении избыток углекислого газа. Такой газообмен обеспечивается процессами дыхания.

Его делят на пять этапов:

1. Внешнее дыхание.

2. Обмен газов между легочными альвеолами и кровью.

3. Транспорт газов кровью.

4. Обмен О2 и СО2 между кровью и клетками.

5. Клеточное дыхание.

Внешнее дыхание обеспечивает вентиляцию легочных альвеол атмосферным воздухом через воздухоносные пути (полость носа, гортань, трахея и бронхи). Они нагревают, увлажняют и очищают вдыхаемые газы.

Внутригрудное пространство, в котором находятся легкие, герметично и с внешней средой не сообщается. Давление между поверхностями легких, диафрагмы и грудной клетки ниже атмосферного, а в легких – близко к атмосферному. Такая разница обусловлена эластической тягой легких (их постоянным стремлением уменьшить свой объем). Поэтому при нарушении герметичности грудной полости давление в ней становится равно атмосферному, и легкие спадаются. Их объем становится значительно меньше, чем при максимальном выдохе и внешнее дыхание прекращается.

Сокращение инспираторных (обеспечивающих вдох) мышц увеличивает объем грудной полости. Давление в ней становится еще меньше, и легкие расправляются. Это понижает давление в самих легких, что вызывает засасывание в них воздуха через воздухоносные пути. Так происходит вдох.

Выдох начинается с расслабления инспираторных мышц. Наблюдающееся при этом уменьшение объема грудной полости и рост давления в ней способствуют пассивному уменьшению легких и выходу воздуха в окружающую среду. Выдох завершается и начинается новый вдох.

При спокойном дыхании функцию инспираторных мышц выполняют только диафрагма и наружные межреберные мышцы, а выдох осуществляется пассивно (грудная клетка и легкие сами занимают то положение, в котором были до вдоха).

Форсированный вдох, дополнительно к названным инспираторным мышцам, обеспечивают грудные мышцы, а функцию экспираторных (обеспечивающих выдох) мышц выполняют внутренние межреберные мышцы и мышцы живота.

Количественной характеристикой легочной вентиляции служит минутный объем дыхания (МОД) - объем воздуха, проходящий через легкие за 1 минуту. Максимальная вентиляция легких (МВЛ) - объем воздуха, проходящего через легкие за 1 минуту во время максимальных по частоте и глубине дыхательных движений.

При спокойном дыхании через легкие проходит дыхательный объем (ДО), который у взрослого человека составляет 400-500 мл. Обычно за 1 минуту совершается 12-16 дыхательных циклов. После спокойного вдоха можно дополнительно вдохнуть резервный объем вдоха (РОвд), составляющий 1,8-2,0 л. После спокойного выдоха человек может выдохнуть резервный объем выдоха (РОвыд). Он, в среднем, равен 1,2-1,4 л. Остаточным объемом (ОО) назван объем воздуха, который остается в легких после максимального выдоха (≈1,2-1,5 л).

Различают следующие емкости легких: 1) общая емкость легких (ОЕЛ) - объем воздуха в легких после максимального вдоха; 2) жизненная емкость легких (ЖЕЛ) - объем воздуха, выдохнутого после максимального вдоха при максимальном выдохе. ЖЕЛ = ОЕЛ – ОО = ДО + РОвд + РОвыд. ЖЕЛ составляет у мужчин 3,5-5,0 л, у женщин - 3,0-4,0 л; 3) емкость вдоха (ЕВД) - сумма ДО и РОвд (в среднем 2,0-2,5 л); 4) функциональная остаточная емкость (ФОЕ) - объем воздуха в легких после спокойного выдоха - примерно 2500 мл.

Воздух, находящийся в воздухоносных путях не участвует в газообмене, и поэтому их объем называют вредным пространством. Во время вдоха объемом 500 мл в альвеолы поступает 350 мл атмосферного воздуха, а 150 мл задерживаются в мертвом пространстве.

Газообмен через альвеолярно-капиллярную мембрану обеспечивается диффузией растворенных газов через стенки альвеол и капилляров в сторону наименьшего парциального давления. Парциальное давление - та часть общего давления, которая приходится на данный газ в смеси с другими газами. Меньшее давление молекулярного кислорода в легочных капиллярах, способствует его переходу из альвеол в кровь. Для СО2 градиент направлен в обратную сторону, и его избыток выходит из крови в альвеолы.

Поскольку объем ФОЕ равен 2500 мл, а при спокойном вдохе в легкие поступает только 250-350 мл атмосферного воздуха, газовый состав в альвеолах существенно не изменяется. Поэтому интенсивность прохождения кислорода и двуокиси углерода через альвеолокапиллярную мембрану практически не зависит от стадии дыхательного цикла.

Транспорт газов кровью обеспечивается в растворенном и связанном состояниях. Количество растворенного в крови кислорода не может обеспечить потребности млекопитающих даже при полном покое. Поэтому основная его часть переносится из капилляров малого круга кровообращения в связанном с гемоглобином состоянии. Один грамм гемоглобина может переносить до 1,36 мл кислорода, а в 1 литре крови содержится 140-150 г гемоглобина. Следовательно, в этом объеме, максимально возможное содержание связанного молекулярного кислорода составляет ≈200 мл (это кислородная емкость крови). Степень насыщения гемоглобина кислородом находится в прямой (но не пропорциональной) зависимости от создаваемого им парциального напряжения. В капиллярах малого круга оно составляет около 100 мм ртутного столба. Этого достаточно для насыщения гемоглобина кислородом на 95-97% от его кислородной емкости. В кровеносных капиллярах большого круга парциальное напряжение существенно ниже. Это приводит к переходу части связанного молекулярного кислорода в растворенное состояние, и он по градиенту парциального давления поступает в клетки тканей. При повышении температуры, а также концентрации водородных ионов и двуокиси углерода в крови, способность гемоглобина отдавать кислород растет. Эти эффекты имеет важное приспособительное значение. Температура и концентрация двуокиси углерода растут там, где происходит интенсивное окисление, а концентрация водородных ионов увеличивается при нехватке кислорода.

Таким образом, связанный молекулярный кислород необходим для переноса его основной массы кровью от легких к тканям, а растворенный - для диффузии из альвеол в эритроциты и из эритроцитов к клеткам.

Двуокись углерода также транспортируется кровью в свободном и связанном состояниях. Одна часть данного газа включается в состав бикарбонатов, а другая соединяется с гемоглобином.

Дыхательная система должна обеспечивать соответствие интенсивности газообмен потребностям организма. Для этого в нескольких отделах ЦНС имеются структуры дыхательного центра. В продолговатом мозге есть центр вдоха (активирует инспираторные мышцы) и центр выдоха (увеличивает активность экспираторных мышц). Возбуждение одного из них, сопровождается торможением другого (реципрокные отношения). Эти центры управляют дыхательными мышцами через спинной мозг. В его шейных сегментах располагаются ядра диафрагмального нерва, а в грудных сегментах - нейронов, иннервирующих межреберные мышцы. В варолиевом мосту обнаружен пневмотаксический центр, участвующий в механизме смены вдоха и выдоха и регулирующий величину дыхательного объема. Гипоталамические ядра координируют связь дыхания с кровообращением. Кора больших полушарий осуществляет произвольную регуляцию дыхания.

Нейроны дыхательного центра тесно связаны с рецепторами дыхательных путей и легких, а также с рецепторами сосудистых рефлексогенных зон. Рецепторы растяжения легких возбуждаются при вдохе, тормозят его и начинается выдох. Рецепторы в трахее и бронхах возбуждаются при действии на них механических или химических раздражителей. Это вызывает частое, поверхностное дыхание и кашель. Раздражения слизистой оболочки носа вызывают чихание, способствующее удалению раздражителя.

Главным физиологическим стимулом дыхательных центров является двуокись углерода. Возрастание ее содержания в альвеолах на 0,2% вызывает удвоение МОД, а снижение кислорода, даже на 40%, не вызывает существенных изменений. Деятельность дыхательного центра зависит и от состава крови. Двуокись углерода, водородные ионы и умеренная гипоксия повышают возбудимость дыхательного центра через периферические (в каротидных синусах) и центральные (в продолговатом мозге) хеморецепторы.

Воздухоносные пути выполняют не только газотранспортную функцию. Например, в них согревается, увлажняется и очищается воздух, регулируется его поступление в альвеолы за счет способности мелких бронхов изменять свой просвет, а также обеспечивается рецепция присутствующих в воздухе раздражителей. Клетки слизистой оболочки полости носа, трахеи и бронхов постоянно продуцируют секрет. Он увлажняет вдыхаемый воздух и выводит из дыхательных путей инородные частицы. Альвеолярные макрофаги фагоцитируют пылевые частицы, микроорганизмы и вирусы. В бронхиальной слизи содержатся также лизоцим, интерферон, протеазы, иммуноглобулин и другие компоненты. Легкие являются не только механическим фильтром, очищающим кровь от разрушенных клеток, сгустков фибрина и других частиц, но и метаболизируют их. Легочная ткань участвует в липидном и белковом обменах (синтезирует фосфолипиды и глицерин, а также окисляет жиры с выделением большого количества энергии). В легких синтезируются факторы свертывающей (протромбиназа) и противосвертывающей (гепарин) систем. Легкие также участвуют в водно-солевом обмене, удаляя за сутки воду.

ПИЩЕВАРЕНИЕ

Для нормальной жизнедеятельности организму необходим пластический и энергетический материал. Он поступает в организм с пищей. Минеральные соли, вода и витамины усваиваются человеком в том виде, в котором они находятся в пище, а большинство органических веществ (белков, жиров и углеводов) сначала преобразуются в системе пищеварения. Пищеварение - совокупность физических, химических и физиологических процессов, обеспечивающих обработку и превращение пищевых продуктов в простые химические соединения, которые всасываются в кровь и усваиваются клетками организма. Эти процессы последовательно осуществляются во всех отделах пищеварительного тракта с участием печени, желчного пузыря и поджелудочной железы. В зависимости от происхождения используемых ферментов различают собственное, симбионтное и аутолитическое пищеварение. Собственное пищеварение осуществляется ферментами, синтезированными железами человека. Симбионтное - ферментами, синтезированными микроорганизмами. Аутолитическое - ферментами, содержащимися в пище.

Секреторная функция желудочно-кишечного тракта связана с выработкой пищеварительных соков. Двигательная (моторная) функция заключается в жевании, глотании, перемешивании и передвижении пищи по пищеварительному тракту и удалении из организма непереваренных остатков.

Инкреторная (эндокринная) функция заключается в выработке гастроинтестинальных гормонов эндокринными клетками оболочки желудка, двенадцатиперстной кишки и поджелудочной железы. Данные гормоны регулируют секрецию, моторику, всасывание, трофику и высвобождения других гормонов определенными отделами пищеварительной системы, а также оказывают общие эффекты: изменяют обмен веществ, деятельность сердечнососудистой и эндокринной систем, пищевое поведение.

Экскреторная функция обеспечивает выделение из организма через желудочно-кишечный тракт продуктов обмена.

Центральные (рефлекторные) влияния на пищеварительный аппарат наиболее выражены в верхней его части, а гуморальная регуляция - в желудке, тонком кишке и поджелудочной железе, в желчеобразовании и желчевыведении. Нервная регуляция преимущественно осуществляется вегетативной нервной системы. Основными стимуляторами пищеварения являются холинергические нейроны, а тормозными - адренергические. В тонком кишечнике также выражена местная регуляция в ответ на механические и химические раздражения.

Пищеварение начинается в ротовой полости, где происходит оценка свойств пищи, а также предварительная ее механическая и химическая обработка. Здесь измельченная пища смачивается слюной и формируется пищевой комок. В полость рта впадают протоки слюнных желез. Одни из них вырабатывают серозный секрет (содержит много воды, белка и солей), другие - слизистый (богатый муцином), а часть желез являются смешанными. Основной фермент слюны амилаза частично расщепляет крахмал и гликоген. Белок муцин склеивает отдельные частицы пищи и формирует пищевой комок.

При поступлении пищи в ротовой полости раздражаются рецепторы, которые передают соответствующую информацию в центр слюноотделения (продолговатый мозг) и начинается выделение слюны. Через парасимпатические нервные волокна стимулируется выделение жидкой слюны с большими количествами неорганических веществ. Раздражение симпатических волокон вызывает отделение небольшого количества вязкой слюны, богатой органическими веществами. Вид и запах пищи, звуки, связанные с приготовлением пищи, а также другие раздражители, если они раньше совпадали с приемом пищи, вызывают условно-рефлекторное слюноотделение. При приеме воды слюна почти не отделяется. При попадании в ротовую полость отвергаемых веществ выделяется жидкая и обильная слюна.

Пищевой комок из ротовой полости проглатывается в желудок, где подвергается дальнейшей обработке.

Секреторная функция желудка обеспечивается находящимися в его стенках железами. Они вырабатывают пепсиногены, соляную кислоту и слизь (защищает стенку желудка от самопереваривания). Главный неорганический компонент желудочного сока - соляная кислота: способствует набуханию белков (это облегчает их расщепление ферментами), активирует пепсиногены, обеспечивает антибактериальное действие, способствует эвакуации содержимого желудка в 12-перстную кишку и усиливает секрецию сока поджелудочной железы. Основными органическими веществами желудочного сока являются протеолитические ферменты, главные среди них - пепсиногены. Под влиянием соляной кислоты они активируются (превращаются в пепсины) и частично расщепляют белки. В желудке продолжается гидролиз углеводов ферментами слюны, так как пищевой комок пропитывается желудочным соком постепенно.

Регуляцию желудочного сокоотделения делят на сложнорефлекторную (мозговую), желудочную и кишечную фазы. Мозговая фаза включает условно-рефлекторный и безусловно-рефлекторный механизмы. При раздражении обонятельных, зрительных и слуховых рецепторов происходит условнорефлекторное отделение (запального или аппетитного) желудочного сока, а безусловно-рефлекторное сокоотделение начинается с момента попадания пищи в ротовую полость. Сок, выделяющийся в мозговую фазу, заранее готовит желудок к приему пищи. Желудочная фаза секреции наступает с момента попадания пищи в желудок, а кишечная фаза секреции начинается при переходе химуса из желудка в кишечник.

В тонкой кишке происходят основные процессы переваривания пищи. Ее начальным отделом является двенадцатиперстная кишка. Здесь в процессе пищеварения участвуют сок поджелудочной железы, кишечный сок и желчь.

Из неорганических веществ, в соке поджелудочной железы много бикарбонатов, благодаря которым pH сока ≈ 7,8-8,5. Панкреатический сок представлен также ферментами, переваривающими белки, жиры, углеводы и нуклеиновые кислоты. Амилаза, липаза и нуклеаза секретируются в активном состоянии; протеазы (трипсиноген, химотрипсиноген, прокарбоксипептидазы и др.) - в неактивном. Амилаза поджелудочной железы расщепляет полисахариды, нуклеазы - нуклеиновые кислоты. Панкреатическая липаза активируется солями желчных кислот и расщепляет липиды. Трипсиноген под влиянием энтерокиназы кишечного сока превращается в трипсин, который активирует другие ферменты.

Характер принятой пищи влияет на отделение сока поджелудочной железой. Так, пищевые продукты, усиливающие секрецию соляной кислоты в желудке (экстрактивные вещества мяса, овощей, продукты переваривания белков), стимулируют выделению поджелудочного сока, богатого бикарбонатами. Белки и жиры способствует выделению сока богатого ферментами.

Кишечный сок представляет собой секрет расположенных в оболочке тонкой кишки желез. Он имеет слабощелочную рН и обеспечивает интенсивное переваривание химуса.

Различают полостное и пристеночное пищеварение. Полостное пищеварение происходит в полости тонкой кишки. Пристеночное пищеварение происходит на поверхности микроворсинок, а образующиеся при этом продукты гидролиза всасываются в кровь и лимфу.

Из тонкой кишки химус переходит в толстую кишку. В толстой кишке происходят концентрирование химуса (путем всасывания воды), формирование каловых масс и удаление их из кишечника. Здесь также всасываются электролиты, водорастворимые витамины, жирные кислоты, углеводы. Железы слизистой оболочки толстой кишки выделяют небольшое количество слизи, а пищеварение в толстой кишке обеспечивается микрофлорой. Она осуществляет конечное разложение непереваренных веществ, расщепляет клетчатку, участвует в метаболизме липидов, желчных и жирных кислот, сбраживает углеводы до молочной и уксусной кислот, синтезирует витамины К и группы В, подавляет размножение патогенных микробов. Образующиеся при брожении кислые продукты препятствуют гниению, поэтому сбалансированное питание уравновешивает эти процессы.

Каловые массы удаляются при рефлекторном акте дефекации. Переполнение ампулы прямой кишки и повышение в ней давления раздражают механорецепторы, стимулирующие непроизвольный центр дефекации (в поясничном и крестцовом сегментах спинного мозга). Оттуда сигналы расслабляют внутренний сфинктер и усиливают сокращения прямой кишки. Произвольный акт дефекации осуществляется при участии коры больших полушарий, которая вызывает расслабление наружного (произвольного) сфинктера. Одновременно сокращается диафрагма и брюшные мышцы, что повышает внутрибрюшное давление и способствует дефекации.

Потребность в питательных веществах выражается в состоянии голода и побуждает к поиску и поеданию пищи. Нейроны, которые определяют пищевое поведение, образуют пищевой центр в коре больших полушарий, в лимбической системе, ретикулярной формации и гипоталамусе (здесь локализуется центр голода и центр насыщения). При возбуждении центра голода развиваются усиление поиска и потребления пищи, а стимуляция центра насыщения приводит к отказу от пищи.

Существует несколько теорий, объясняющих возникновение чувства голода. Глюкостатическая теория - ощущение голода связано со снижением уровня глюкозы в крови. Аминоацидостатическая - чувство голода создается понижением содержания в крови аминокислот. Липостатическая - пищевой центр возбуждается недостатком жирных кислот и триглицеридов в крови. Метаболическая - раздражителем пищевого центра являются продукты метаболизма цикла Кребса. Локальная теория - чувство голода возникает в результате импульсации от механорецепторов желудка при его «голодных» сокращениях.

Сенсорное насыщение возникает при раздражении рецепторов рта и желудка пищей. Истинное насыщение наступает только после поступления в кровь питательных веществ.

Всасывание - это процесс транспорта веществ из желудочно-кишечного тракта в кровь и лимфу. Белки всасываются в виде аминокислот, углеводы - в виде моносахаридов, жиры - в виде глицерина и жирных кислот. В полости рта всасывание незначительное, но некоторые вещества, например, лекарственные препараты (эфирные масла, нитроглицерин и др.) всасываются из ротовой полости быстро. В желудке всасываются некоторые аминокислоты, немного глюкозы, воды с растворенными минеральными солями и алкоголь. Основное всасывание происходит в тонком кишечнике. Всасывание в толстой кишке незначительно, там всасывается вода (необходимо для формирования кала), глюкоза, аминокислоты, минеральные соли, жирные кислоты и жирорастворимые витамины.

Жиры после их гидролиза под действием липазы на глицерин и жирные кислоты всасываются наиболее активно в двенадцатиперстной и тощей кишках. Жирные кислоты на поверхности энтероцита соединяются с желчными кислотами, и образуется мицелла, которая проходит через мембрану энтероцита, а затем разрушается. Освобождающиеся при этом желчные кислоты всасываются в кровь и поступают в печень (где могут снова использоваться для образования желчи). Жирные кислоты в энтероците включаются в состав триглицеридов и фосфолипидов, а затем в составе хиломикронов выходят в лимфатические сосуды и окрашивают лимфу в белый цвет (млечный сок).

Печень (свое название получила от слова «печь») обычно имеет самую высокую температуру в организме человека. Пищеварительная функция печени заключается в секреции желчи. Она образуется непрерывно и вне пищеварения накапливается в желчном пузыре. Желчевыделение в двенадцатиперстную кишку начинается через 3-12 мин после начала приема пищи. Желчь содержит соли желчных кислот, желчные пигменты, холестерин, жирные кислоты, лецитин, муцин, мочевину, мочевую кислоту, незначительное количество ферментов и неорганические вещества. Не более 30% необходимого человеку холестерина (участвует в образовании желчных кислот, мицелл и хиломикронов) всасывается из кишечника в кровь. Около 80% его образуется в печени, 10% - в тонком кишечнике, остальное количество - в коже. Желчные кислоты способствуют эмульгированию и всасыванию в кровь жирных кислот и жирорастворимых витаминов (A, D, Е, К). Желчные пигменты (билирубин и биливердин) образуются из гемоглобина разрушающихся эритроцитов и придают желчи специфическую окраску. Они выделяются с желчью в двенадцатиперстную кишку, где превращаются в стеркобил



Дата добавления: 2022-04-12; просмотров: 70;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.026 сек.