Реакции переноса электронов


Элементарные стадии с участием комплексов металлов

Реакции металлокомплексов можно разделить на три группы:

а) реакции переноса электрона;

б) реакции замещения лигандов;

в) реакции координированных лигандов.

 

Реакции переноса электронов

Два механизма реализуются в реакциях переноса электронов – внешнесферный механизм (без изменений в координационных сферах донора и акцептора) и мостиковый (внутрисферный) механизм, приводящий к изменениям в координационной сфере металла.

Рассмотрим внешнесферный механизм на примере октаэдрических комплексов переходных металлов. В случае симметричных реакций (DG0 = 0)

константы скорости меняются в очень широком интервале значений – от 10–12 до 105 л·моль–1·сек–1, в зависимости от электронной конфигурации иона и степени ее перестройки в ходе процесса. В этих реакциях очень наглядно проявляется принцип наименьшего движения – наименьшего изменения валентной оболочки участников реакции.

В реакции переноса электрона (1) (Со* – изотоп атома Со)

(1)

(симметричная реакция), Co2+ (d7) переходит в Co3+ (d6). Электронная конфигурация (валентная оболочка) в ходе этого переноса не меняется

6 электронов на трижды вырожденном связывающем уровне остаются без изменения ( ), а с разрыхляющего eg уровня снимается один электрон. Константа скорости второго порядка для реакции (1) k1 = 1.1 л×моль–1×сек–1. Поскольку Phen (фенантролин) относится к сильным лигандам, максимальное число из 7 d-электронов спарено (спин-спаренное состояние). В случае слабого лиганда NH3 ситуация кардинально меняется. Co(NH3)n2+ (n = 4, 5, 6) находится в спин-неспаренном (высокоспиновом) состоянии .

Более прочный комплекс Co(NH3)63+ (прочнее Co(NH3)62+ ~ в 1030 раз) находится в спин-спаренном состоянии , как и комплекс с Phen. Поэтому в процессе переноса электрона должна сильно перестроиться валентная оболочка и в результате k = 10–9 л×моль–1×сек–1. Степень превращения Со2+ в Со3+, равная 50%, достигается в случае лиганда Phen за 1 секунду, а в случае NH3 ~ за 30 лет. Очевидно, что стадию с такой скоростью (формально элементарную) можно исключить из набора элементарных стадий при анализе механизмов реакции.

Величина DG¹ для реакции переноса электронов при образовании комплекса столкновения согласно теории Маркуса включает два компонента и

(2)

Первый член – энергия реорганизации связей M-L внутри комплекса (длина и прочность связи при изменении валентного состояния). Величина включает энергию перестройки внешней сольватной оболочки в процессе изменения координат M-L и заряда комплекса. Чем меньше изменение электронного окружения и меньше изменение длины M-L, тем ниже , чем больше по размерам лиганды, тем меньше и, в результате, выше скорость переноса электронов. Величину для общего случая можно рассчитать по уравнению Маркуса

, (3)

где . При = 0 .

В случае внутрисферного механизма процесс переноса электрона облегчается, поскольку один из лигандов первого комплекса образует мостиковый комплекс со вторым комплексом, вытесняя из него один из лигандов

Константы скорости такого процесса на 8 порядков выше константы для восстановления Cr(NH3)63+. В таких реакциях восстанавливающий агент должен быть лабильным комплексом, а лиганд в окислителе должен быть способен к образованию мостиков (Cl, Br, I, N3, NCS, bipy).

 



Дата добавления: 2020-07-18; просмотров: 140;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.007 сек.