Дифракция электронов


 

Дифракция электронов - рассеяние электронов веществом, при котором из начального пучка частиц возникают дополнительно отклонённые пучки этих частиц. Дифракция электронов может быть объяснена только на основе квантово-механических представлений о микрочастице (электроне) как о волне.

Основные геометрические закономерности дифракции электронов ничем не отличаются от закономерностей дифракции волн других диапазонов. Общим условием дифракции волн любой природы является соизмеримость длины падающей волны с расстоянием между рассеивающими центрами:

λ ≤ d . (6)

Первое экспериментальное подтверждение гипотезы де Бройля было получено в 1927 году американскими физиками К. Девиссоном и Л. Джермером. Они обнаружили, что пучок электронов, рассеивающийся на кристалле никеля, дает отчетливую дифракционную картину, подобную той, которая возникает при рассеянии на кристалле коротковолнового рентгеновского излучения. В этих экспериментах кристалл играл роль естественной дифракционной решетки. Пучок электронов ускорялся в электрическом поле, проходя разность потенциалов U. При этом электроны приобретали кинетическую энергию mυ2/2 = eU, т.е. импульс

p = mυ = (2meU)1/2. (7)

Затем пучок электронов направлялся на мишень, состоявшую из сравнительно крупных кристаллов никеля. Подвижный детектор измерял количество электронов, рассеянных под разными углами. Возникшая картина полностью соответствовала картине рассеяния рентгеновских лучей на кристалле

Пользуясь условием Брэгга, Дэвиссон и Джермер определили длину волны электронов λ= h/p и сравнили с вычислениями, основанными на гипотезе де Бройля, получив прекрасное согласие.

По положению дифракционных максимумов была определена длина волны электронного пучка, которая оказалась в полном соответствии с вычесленной по формуле де Бройля.

В следующем 1928 году английский физик Г. Томсон (сын Дж. Томсона, открывшего за 30 лет до этого электрон) получил новое подтверждение гипотезы де Бройля. В своих экспериментах (рисунок 5) Г. Томсон наблюдал дифракционную картину, возникающую при прохождении пучка электронов через тонкую поликристаллическую фольгу из золота.

 

Рисунок 5 Упрощенная схема опытов Г. Томсона по дифракции электронов. K – накаливаемый катод, A – анод, Ф – фольга из золота

На установленной за фольгой фотопластинке отчетливо наблюдались концентрические светлые и темные кольца, радиусы которых изменялись с изменением скорости электронов (т. е. длины волны) согласно де Бройлю (рисунок 6).

Рисунок 6 Картина дифракции электронов на поликристаллическом образце при длительной экспозиции (a) и при короткой экспозиции (b). В случае (b) видны точки попадания отдельных электронов на фотопластинку

 

В последующие годы опыт Дж. Томсона был многократно повторен с неизменным результатом, в том числе при условиях, когда поток электронов был настолько слабым, что через прибор единовременно могла проходить только одна частица (В. А. Фабрикант, 1948 г.). Таким образом, было экспериментально доказано, что волновые свойства присущи не только большой совокупности электронов, но и каждому электрону в отдельности.

 

Рисунок 7 Дифракционная картина рассеяния электронов

 

Впоследствии дифракционные явления были обнаружены также для нейтронов, протонов, атомных и молекулярных пучков. Экспериментальное доказательство наличия волновых свойств микрочастиц привело к выводу о том, что это универсальное явление природы, общее свойство материи. Следовательно, волновые свойства должны быть присущи и макроскопическим телам. Однако вследствие большой массы макроскопических тел их волновые свойства не могут быть обнаружены экспериментально. Например, пылинке массой 10–9 г, движущийся со скоростью 0,5 м/с соответствует волна де Бройля с длиной волны порядка 10–21 м, т. е. приблизительно на 11 порядков меньше размеров атомов. Такая длина волны лежит за пределами доступной наблюдению области. Этот пример показывает, что макроскопические тела могут проявлять только корпускулярные свойства.

Рассмотрим еще один пример. Длина волны де Бройля для электрона, ускоренного разностью потенциалов U = 100 В, может быть найдена по формуле

(8)

Это нерелятивистский случай, т. к. кинетическая энергия электрона

eU = 100 эВ много меньше энергии покоя mc2 ≈ 0,5 МэВ. Расчет дает значение

λ ≈ 0,1 нм, т. е. длина волны как раз оказывается порядка размеров атомов. Для таких электронов кристаллическое вещество является хорошей дифракционной решеткой. Именно такие малоэнергичные электроны дают отчетливую дифракционную картину в опытах по дифракции электронов. В то же время такой электрон, испытавший дифракционное рассеяние на кристалле как волна, взаимодействует с атомами фотопластинки как частица, вызывая почернение фотоэмульсии в какой-то определенной точке (Рисунок 7).

Таким образом, подтвержденная экспериментально гипотеза де Бройля о корпускулярно-волновом дуализме коренным образом изменила представления о свойствах микрообъектов.

Всем микрообъектам присущи и волновые, и корпускулярные свойства, однако, они не являются ни волной, ни частицей в классическом понимании. Разные свойства микрообъектов не проявляются одновременно; они дополняют друг друга, и только их совокупность характеризует микрообъект полностью. В этом заключается сформулированный знаменитым датским физиком Н. Бором принцип дополнительности. Можно условно сказать, что микрообъекты распространяются как волны, а обмениваются энергией как частицы.

С точки зрения волновой теории, максимумы в картине дифракции электронов соответствуют наибольшей интенсивности волн де Бройля. В области максимумов, зарегистрированных на фотопластинке, попадает большее число электронов. Но процесс попадания электронов в различные места на фотопластинке не индивидуален. Принципиально невозможно предсказать, куда попадет очередной электрон после рассеяния, существует лишь определенная вероятность попадания электрона в то или иное место. Таким образом, описание состояния микрообъекта и его поведения может быть дано только на основе понятия вероятности.

Необходимость вероятностного подхода к описанию микрообъектов является важнейшей особенностью квантовой теории. В квантовой механике для характеристики состояний объектов в микромире вводится понятие волновой функции Ψ (пси-функции). Квадрат модуля волновой функции |Ψ|2 пропорционален вероятности нахождения микрочастицы в единичном объеме пространства. Конкретный вид волновой функции определяется внешними условиями, в которых находится микрочастица. Математический аппарат квантовой механики позволяет находить волновую функцию частицы, находящейся в заданных силовых полях. Безграничная монохроматическая волна де Бройля есть волновая функция свободной частицы, на которую не действуют никакие силовые поля.

Образование дифракционной картины при рассеянии электронов веществом в квантовой физике интерпретируется как распределение вероятности попадания электрона в различные точки экрана. Прошедший через кристалл электрон в результате взаимодействия с кристаллической решёткой образца отклоняется от первоначального направления движения и попадает в некоторую точку фотопластинки, установленной за кристаллом. При длительной экспозиции постепенно возникает упорядоченная картина дифракционных максимумов и минимумов в распределении электронов, прошедших через кристалл. Точно предсказать, в какое место фотопластинки попадёт данный электрон, нельзя, но можно указать вероятность его попадания после рассеяния в ту или иную точку пластинки. Эта вероятность определяется квадратом модуля волновой функции электрона Ψ(x, y,z, t)2 , а дифракционная картина на экране возникает как результат вероятностного процесса.

Образование дифракционной картины при рассеянии электронов веществом в квантовой физике интерпретируется как распределение вероятности попадания электрона в различные точки экрана. Прошедший через кристалл электрон в результате взаимодействия с кристаллической решёткой образца отклоняется от первоначального направления движения и попадает в некоторую точку фотопластинки, установленной за кристаллом. При длительной экспозиции постепенно возникает упорядоченная картина дифракционных максимумов и минимумов в распределении электронов, прошедших через кристалл. Точно предсказать, в какое место фотопластинки попадёт данный электрон, нельзя, но можно указать вероятность его попадания после рассеяния в ту или иную точку пластинки. Эта вероятность определяется квадратом модуля волновой функции электрона Ψ(x, y,z, t)2 , а дифракционная картина на экране возникает как результат вероятностного процесса.

Наиболее отчетливо дифракционные явления проявляются в тех случаях, когда размеры препятствия, на котором происходит дифракция волн, соизмеримы с длиной волны. Это относится к волнам любой физической природы и, в частности, к электронным волнам. Для волн де Бройля естественной дифракционной решеткой является упорядоченная структура кристалла с пространственным периодом порядка размеров атома (приблизительно 0,1 нм). Препятствие таких размеров (например, отверстие в непрозрачном экране) невозможно создать искусственно, но для уяснения природы волн де Бройля можно ставить мысленные эксперименты.

Вывод: при определенных условиях электрон и другие микрочастицы проявляют волновые свойства.

Свет обладает как волновыми, так и корпускулярными свойствами. Волновые свойства проявляются при распространении света (интерференция, дифракция). Корпускулярные свойства проявляются при взаимодействии света с веществом (фотоэффект, излучение и поглощение света атомами).

Свойства фотона как частицы (энергия Е и импульс p) связаны с его волновыми свойствами (частотой ν и длиной волны λ) соотношениями

; , (9)

где h=6,63×10-34 Дж - постоянная Планка.

Наиболее ярко волновые свойства проявляются у микрообъектов (элементарных частиц). Вследствие малой массы длина волны де Бройля оказывается сравнимой с межатомным расстоянием в кристаллах. В этих условиях при взаимодействии пучка частиц с кристаллической решеткой возникают дифракционные явления. Электронам с энергией 150 эВ соответствует длина волны λ»10-10 м. Такого же порядка межатомные расстояния в кристаллах. Если пучок таких электронов направить на кристалл, то они будут рассеиваться по законам дифракции. Зафиксированная на фотопленке дифракционная картина (электронограмма) содержит информацию о строении трехмерной кристаллической решетки.

 

Рисунок 8 Иллюстрация волновых свойств вещества

 

Рассмотрим, например, дифракцию электронов на одиночной щели ширины D (рисунок 8).

 

Рисунок 9 Дифракция электронов на щели. График справа – распределение электронов на фотопластинке

Более 85 % всех электронов, прошедших через щель, попадут в центральный дифракционный максимум. Угловая полуширина θ1 этого максимума находится из условия

D sinθ1 = λ. (10)

Это формула волновой теории. С корпускулярной точки зрения можно считать, что при пролете через щель электрон приобретает дополнительный импульс в перпендикулярном направлении. Пренебрегая 15 % электронов, которые попадают на фотопластинку за пределами центрального максимума, можно считать, что максимальное значение py поперечного импульса равно

(11)

где p – модуль полного импульса электрона, равный, согласно де Бройлю, h / λ. Величина p при прохождении электрона через щель не меняется, т. к. остается неизменной длина волны λ. Из этих соотношений следует

(12)

 

Квантовая механика вкладывает в это простое на вид соотношение, являющееся следствием волновых свойств микрочастицы, чрезвычайно глубокий смысл. Прохождение электронов через щель является экспериментом, в котором y – координата электрона – определяется с точностью Δy = D. Величину Δy называют неопределенностью измерения координаты. В то же время точность определения y – составляющей импульса электрона в момент прохождения через щель – равна py или даже больше, если учесть побочные максимумы дифракционной картины. Эту величину называют неопределенностью проекции импульса и обозначают Δpy. Таким образом, величины Δy и Δpy связаны соотношением

Δy · Δpy ≥ h, (13)

 

которое называется соотношением неопределенностей Гейзенберга. Величины Δy и Δpy нужно понимать в том смысле, что микрочастицы в принципе не имеют одновременно точного значения координаты и соответствующей проекции импульса. Соотношение неопределенностей не связано с несовершенством применяемых приборов для одновременного измерения координаты и импульса микрочастицы. Оно является проявлением двойственной корпускулярно-волновой природы материальных микрообъектов. Соотношение неопределенностей позволяет оценить, в какой мере можно применять к микрочастицам понятия классической механики. Оно показывает, в частности, что к микрообъектам неприменимо классическое понятие траектории, так как движение по траектории характеризуется в любой момент времени определенными значениями координат и скорости. Принципиально невозможно указать траекторию, по которой в рассмотренном мысленном эксперименте двигался какой-то конкретный электрон после прохождения щели до фотопластинки.

Однако при определенных условиях соотношение неопределенностей не противоречит классическому описанию движения тел, в том числе и микрочастиц. Например, электронный пучок в кинескопе телевизора при вылете из электронной пушки имеет диаметр D порядка 10–3 см. В современном телевизоре ускоряющее напряжение U ≈ 15 кВ. Легко подсчитать импульс электрона:

(14)

 

Этот импульс направлен вдоль оси трубки. Из соотношения неопределенностей следует, что электронам при формировании пучка сообщается неконтролируемый импульс Δp, перпендикулярный оси пучка: Δp h / D ≈ 6,6·10–29 кг·м/с.

Пусть до экрана кинескопа электроны пролетают расстояние L ≈ 0,5 м. Тогда размытие Δl пятна на экране, обусловленное волновыми свойствами электрона, составит

(15)

 

Поскольку Δl << D, движение электронов в кинескопе телевизора можно рассматривать с помощью законов классической механики. Таким образом, с помощью соотношения неопределенностей можно выяснить, справедливы или нет законы классической физики в тех или иных случаях.

Рассмотрим еще один мысленный эксперимент – дифракцию электронного пучка на двух щелях (Рисунок 10). Схема этого эксперимента совпадает со схемой оптического интерференционного опыта Юнга.

Рисунок 10 Дифракция электронов на двух щелях

Анализ этого эксперимента позволяет проиллюстрировать логические трудности, возникающие в квантовой теории. Те же проблемы возникают при объяснении оптического опыта Юнга, исходя из концепции фотонов.

Если в опыте по наблюдению дифракции электронов на двух щелях закрыть одну из щелей, то интерференционные полосы исчезнут, и фотопластинка зарегистрирует распределение электронов, продифрагировавших на одной щели (Рисунок 10). В этом случае все электроны, долетающие до фотопластинки, проходят через единственную открытую щель. Если же открыты обе щели, то появляются интерференционные полосы, и тогда возникает вопрос, через какую из щелей пролетает тот или иной электрон?

Психологически очень трудно смириться с тем, что ответ на этот вопрос может быть только один: электрон пролетает через обе щели. Мы интуитивно представляем себе поток микрочастиц как направленное движение маленьких шариков и применяем для описания этого движения законы классической физики. Но электрон (и любая другая микрочастица) обладает не только корпускулярными, но и волновыми свойствами. Легко представить, как электромагнитная световая волна проходит через две щели в оптическом опыте Юнга, т. к. волна не локализована в пространстве. Но если принять концепцию фотонов, то мы должны признать, что каждый фотон тоже не локализован. Невозможно указать, через какую из щелей пролетел фотон, как невозможно проследить за траекторией движения фотона до фотопластинки и указать точку, в которую он попадет. Опыт показывает, что даже в том случае, когда фотоны пролетают через интерферометр поштучно, интерференционная картина после пролета многих независимых фотонов все равно возникает. Поэтому в квантовой физике делается вывод: фотон интерферирует сам с собой.

Все вышесказанное относится и к опыту по дифракции электронов на двух щелях. Вся совокупность известных экспериментальных фактов может найти объяснение, если принять, что дебройлевская волна каждого отдельного электрона проходит одновременно через оба отверстия, в результате чего и возникает интерференция. Поштучный поток электронов тоже дает интерференцию при длительной экспозиции, т.е. электрон, как и фотон, интерферирует сам с собой.

 

 

Электронография

Электронография– метод исследования структуры кристаллических веществ, основанный на дифракционном рассеянии ускоренных электрическим полем электронов. Он применяется для изучения атомной структуры кристаллов, аморфных тел и жидкостей, молекул газов и паров. Существует несколько вариантов метода. Основным является электронография на просвет, при этом используют дифракцию электронов высоких энергий (50-300 кэВ, что соответствует длине волны около 5-10-3 нм). Электронографию проводят в спец. приборах - электронографах, в которых поддерживается вакуум 10-5-10-6 Па, время экспозиции около 1 с, или в трансмиссионных электронных микроскопах. Образцы для исследований готовят в виде тонких пленок толщиной 10-50 нм, осаждая кристаллическое вещество из растворов или суспензий, либо получая пленки вакуумным распылением. Образцы представляют собой мозаичный монокристалл, текстуру или поликристалл.

При прохождении через вещество электроны, обладающие волновыми свойствами, взаимодействуют с атомами, в результате чего образуются дифрагированные пучки, интенсивность и расположение которых связаны с атомной структурой вещества и другими структурными параметрами. Рассеяние электронов определяется электростатическим потенциалом атомов, максимумы которого отвечают положениям атомных ядер.

Сильное взаимодействие электронов с веществом ограничивает толщину просвечиваемых образцов десятыми долями микрометра. Поэтому методами электронографии изучают атомную структуру мелкокристаллических веществ, структуру поверхностей твёрдых тел, например, при исследовании явлений коррозии металлов, адсорбции и катализа.

Дифракционная картина - электронограмма - возникает в результате прохождения начального монохроматического пучка электронов через образец и представляет собой совокупность упорядочение расположенных дифракционных пятен - рефлексов (Рисунок 11), которые определяются расположением атомов в исследуемом объекте.

 

 

Рисунок 11 Вид электронограммы

Расчеты, обычно проводимые на ЭВМ, позволяют установить координаты атомов, расстояния между ними и т. д. (Рисунок 12).

 

Рисунок 12 Электронография слоистых силикатов


Определение типа кристаллической решетки вещества по его электронограмме даже с применением современных ЭВМ представляет сложную задачу и может занять несколько дней или недель.

В основе расчёта элементов кристаллической ячейки и определения симметрии кристалла лежит измерение упорядоченного расположения дифракционных максимумов - точек или пятен («рефлексов») на электронограммах. С волновой точки зрения дифракция электронов полностью эквивалентна дифракции света на дифракционной решётке. Поэтому при рассеянии электронов на кристаллах положение главных максимумов определяется формулой дифракционной решётки:

dsin Θ = mλ (16)

 

При малых углах дифракции

(17)

Если на некотором расстоянии L от решётки поместить фотопластинку, то на ней будет зарегистрирована дифракционная картина в виде узких дифракционных полос – рефлексов, положения которых определяются при малых углах дифракции соотношением

(18)

откуда период кристаллической решётки (межплоскостное расстояние)

(19)

 

5 Порядок выполнения работы



Дата добавления: 2021-02-19; просмотров: 194;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.026 сек.