Принцип действия тиристоров


Рассмотрим работу тиристоров на примере динистора – диодного тиристора без управляющего электрода (рисунок 8.4). В прямом включении крайние переходы (катод и анод) смещены в прямом направлении, центральный переход – в обратном. Основная часть внешнего прямого напряжения падает на центральном переходе П2, так как он смещен в обратном направлении, а ток через структуру в закрытом состоянии будет определяться обратным током этого перехода. С увеличением анодного напряжения увеличивается обратный ток I02(U2), обусловленный термогенерацией в ОПЗ центрального перехода либо лавинным размножением. Этот ток является частью внутреннего базового тока для двух составляющих транзисторов анодной (p-n-p) и катодной (n-p-n) секций. Поэтому ток через структуру Iа будет возрастать более сильно, чем I02, из-за усиления транзисторными секциями, коэффициенты передачи которых возрастают с ростом тока на малых уровнях инжекции (7.23).

Другой частью внутреннего базового тока составляющих транзисторов являются инжекционные токи анодного и катодного переходов, ; , с учетом рекомбинационных потерь в n-базе и p-базе.

В силу непрерывности тока (рисунок 8.4)

. (8.1)

Из этого выражения следует:

. (8.2)

 

 

 

 

 

a) б)

Рисунок 8.4 - Структура (а) и ВАХ динистора (б)

 

На малых токах, при которых a1 » 0; a2 » 0, ВАХ динистора аналогична ВАХ изолированного центрального p-n перехода (нет связи между переходами) Ia = I02(U2), (кривая 1, рисунок 8.4, б).

При токах Iа > Iвыкл , при которых сумма коэффициентов передачи становится равной единице, ток анода стремится к бесконечности (рисунок 8.2) и ограничивается внешней нагрузкой (кривая 2, рисунок 8.4,б).

Таким образом, в прямом смещении динистор имеет два устойчивых состояния: закрытое, характеризуемое малым током и большим напряжением (большое сопротивление) и открытое с большими токами и малым сопротивлением. Положительная обратная связь и регенеративный процесс перехода из одного устойчивого состояния в другое обеспечивается ростом коэффициентов передачи тока транзисторных секций с увеличением анодного тока. Это свойство структуры является определяющим в формировании ВАХ тиристоров с участком отрицательного дифференциального сопротивления S – типа.

Проведем качественный анализ ВАХ динистора. Для этого перепишем (8.1) в следующем виде:

(8.3)

Левая часть выражения (8.3) представляет собой электронный рекомбинационный ток в n-базе тиристора. Правая часть этого выражения отражает поступающий в n-базу электронный ток за счет термогенерации и инжекции из катодного перехода. Представляя ток потоком электронов, , равенство (8.3) можно трактовать через концентрацию динамического заряда: количество электронов, поступивших в n-базу, равно количеству вышедших (прорекомбинированных и инжектированных в p+-эмиттер). Это условие является следствием условия непрерывности тока. Коэффициент передачи тока транзистора на малых уровнях инжекции может быть представлен в виде (7.23):

,

где – характеристический ток, определяемый начальными токами насыщения токов рекомбинации в ОПЗ эмиттера и на его поверхности. Разложив радикал в ряд Тейлора и ограничившись двумя членами, получим (рисунок 8.5):

. (8.4)

 

 

a1, a3

a30

 

a10

 

 

Iа

Рисунок 8.5 - Зависимость коэффициентов передачи тока транзисторных

секций от тока анода

 

Подставив значения (8.4) в выражение (8.3) , получим:

(8.5)

Сохранение непрерывности тока реализуется при условии, когда ток генерации центрального перехода определяется разностью тока рекомбинации в n-базе и тока коллектирования электронов, инжектированных катодом. С точки зрения динамического заряда это условие устанавливает соотношение между концентрацией генерируемых центральным переходом электронов и концентрациями рекомбинируемых и коллектируемых электронов. Представим выражения (8.5) в графическом виде (рисунок 8.6).

Напряжение на центральном переходе однозначно связано с величиной обратного тока (5.74):

,

где n = 2 для ступенчатого, и n = 3 для плавного p-n перехода. Из этого выражения следует (рисунок 8.6,в):

.

На малых токах анода коэффициенты близки к нулю, и ток анода определяется обратным током центрального p-n перехода. По мере роста напряжения Ua возрастает ток анода за счет роста (точка 1, рисунок 8.6 б, в). Ток анода в закрытом состоянии растет более сильно, чем I02. При некотором значении тока анода (точка 2, рисунок 8.6) обратный ток I02 достигает максимального значения, а следовательно, и напряжение U2 становится максимальным. Дальнейшее увеличение тока анода приводит к уменьшению рекомбинационных потерь в n-базе из-за увеличения . При этом увеличивается концентрация коллектируемых электронов из-за роста . В результате в базе возникает избыток электронов, который нейтрализует часть заряда ионов доноров, приводя к снижению напряжения U2 на величину, обеспечивающую уменьшение I02 и nген на избыток поставляемых основных носителей заряда (точка 3, рисунок 8.6). Этим самым обеспечивается условие квазинейтральности в n-базе. Наконец, при , избыточный электронный заряд компенсирует внешнее смещение центрального перехода, и ток I02 становится равным нулю (точка 4, рисунок 8.6). В этом случае условие квазинейтральности в n-базе обеспечивается исключительно крайними переходами, при этом (8.3)

.

Дальнейшее увеличение тока анода приводит к прямому смещению центрального перехода, что соответствует режиму насыщения транзисторных секций. После переключения П2 в прямое направление он становится генератором напряжения, одновременно коллектирующим и инжектирующим носители заряда в базы тиристора. При этом количество инжектируемых электронов в p-базу и дырок в n-базу поддерживает электронейтральность баз и стабилизацию суммы коэффициентов передачи на уровне единицы за счет повышения темпа рекомбинации и эффектов больших уровней инжекции.

Ia(1-a1), nрек

 

a3·Ia nколл а)

a3·Ia

 

I02 nгенIa

2 б)

1 3

 

4 Ia

U2 2

1 в)

 

Ia

Uа

 

г)

 

Iвкл Iвыкл IнIa

 

Рисунок 8.6 - Зависимость токов рекомбинации в n-базе и коллектирования электронов (а), обратного тока центрального перехода (б), напряжения на центральном переходе (в)

от тока анода; ВАХ динистора (г)

 

Прямое смещение центрального перехода приводит к появлению второй особой точки на ВАХ динистора, в которой дифференциальное сопротивление равно нулю (точка 5, рисунок 8.6, г). При величине тока анода ниже тока удержания IHOLD тиристор регениративно переходит из открытого состояния в закрытое из-за уменьшения коэффициентов передачи тока транзисторных секций с уменьшением анодного тока. Значение тока удержания IHOLD несколько выше Iвыкл.

Одновременно происходит модуляция (уменьшение) омического сопротивления баз тиристора, что способствует уменьшению падения напряжения на тиристоре во включенном состоянии.

.

Во включенном состоянии на больших токах падение напряжения на тиристоре соответствует падению напряжения на p+-i-n+ диоде с учетом глубокой модуляции сопротивлений баз тиристора.

Таким образом, принцип действия тиристоров основан на инжекции крайними, прямо смещенными переходами (анод, катод) носителей заряда в базы, коллектировании центральным обратно смещенным переходом дошедших носителей; возрастании обратного тока центрального перехода за счет тепловой генерации или лавинного размножения с ростом анодного напряжения, увеличивающим анодный ток в закрытом состоянии; возрастании коэффициентов передачи тока транзисторных секций, обеспечивающих положительную обратную связь и регенеративный процесс переключения, с ростом анодного тока, что приводит к появлению избыточных основных носителей заряда в базах тиристора, которые компенсируют часть зарядов ионов ОПЗ центрального p-n перехода, вызывая уменьшение напряжения на структуре с увеличением анодного тока, т.е. появлению участка отрицательного дифференциального сопротивления на ВАХ тиристора.

В заключение сформулируем необходимые условия для реализации ВАХ тиристора.

1. Один или оба коэффициента передачи тока транзисторных секций должны увеличиваться с ростом тока.

2. Ток утечки через центральный переход должен увеличиваться с ростом прямого напряжения на структуре.

3. Для обеспечения малого напряжения во включенном состоянии сумма коэффициентов передачи тока транзисторных секций должна превышать единицу.

Последнее условие не является принципиальным, так, например, в лавинном транзисторе в открытом состоянии эффективный коэффициент передачи поддерживается равным единице за счет лавинного размножения в коллекторном переходе.

 

 



Дата добавления: 2019-09-30; просмотров: 170;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.014 сек.