Тензорезисторные преобразователи


Принцип действия тензорезисторных измерительных преобразова-

телей давления основан на явлении тензоэффекта, рассмотренном

в гл. 2. На сегодняшний день тензорезисторные измерительные преоб-

разователи давления (в переводной литературе их иногда называют

пьезорезисторными, не надо путать с пьезоэлектрическими) являются

самыми популярными в мире. Они представляют собой металлическую

и (или) диэлектрическую измерительную мембрану, на которой раз-

мещаются тензорезисторы. Деформация мембраны под воздействием

внешнего давления приводит к локальным деформациям тензорезисто-

ров, включенным обычно в плечи четырехплечего уравновешенного

моста. При этом одна пара тензорезисторов, включенных в противопо-

ложные плечи моста, имеет положительную тензочувствительность, а

другая — отрицательную. Их сопротивления при подаче давления со-

ответственно увеличиваются и уменьшаются на величину AR. При от-

сутствии давления все четыре сопротивления равны по величине и мост

сбалансирован. При подаче давления баланс (равновесие) моста на-

рушается, и в измерительной диагонали моста будет протекать ток. Этот

токовый сигнал и является мерой измеряемого давления.

Как уже было отмечено в гл. 2, тензорезисторы выполняются как

из металлов (проволочные, фольговые), так и из полупроводников.

Поскольку чувствительность полупроводниковых тензорезисторов в

десятки раз выше, чем у металлических, и, кроме того, интегральная

технология позволяет в одном кристалле кремния формировать одно-

временно как тензорезисторы, так и микроэлектронный блок обра-

ботки, то в последние годы получили преимущественное развитие

интегральные полупроводниковые тензорезисторные чувствительные

элементы. Такие чувствительные элементы реализуются двумя спо-

собами: 1) по гетероэпитаксиальной технологии «кремний на сап-

фире» (КНС), в соответствии с которой тонкая пленка кремния

выращивается на подложке из сапфира, припаянной твердым при-

поем к титановой мембране (рис. 5.6, а); 2) по технологии диффузи-

онных резисторов с изоляцией их от проводящей кремниевой под-

ложки р-и-переходами — технология «кремний на кремнии» (КНК).

В структуре КНК мембрана из монокристаллического кремния раз-

мещается на диэлектрическом основании с использованием легко-

плавкого стекла или методом анодного сращивания (рис. 5.6, б).

Особенно широкое применение в изготовлении общепромышлен-

ных измерительных преобразователей давления в настоящее время

получила технология КНС. К ее преимуществам можно отнести хо-

рошую защищенность чувствительного элемента от воздействия

любой агрессивной среды, налаженное серийное производство, низ-

кую стоимость. Однако структура КНС имеет и недостатки: времен-

ную нестабильность градуировочной характеристики и существенную

погрешность гистерезиса от давления и температуры. Это обуслов-

лено неоднородностью конструкции и жесткой связью мембраны с

конструктивными элементами датчика. Измерительные преобразо-

ватели давления, выполненные на основе структуры КНК, имеют

большую временную и температурную стабильность по сравнению с

преобразователями на основе КНС-структур.

Наибольшую погрешность в результат измерения давления с

помощью тензорезисторных измерительных преобразователей

вносит изменение температуры. Для ее уменьшения в связи с ши-

роким применением в последнее время интеллектуальных преоб-

разователей, как правило, используется автоматическое введение

поправок на температуру. При этом первичный преобразователь

(тензорезисторный чувствительный элемент) подвергается пред-

варительной градуировке при различных значениях температуры.

Эти градуировочные данные вводятся в память микропроцессора

интеллектуального преобразователя. При эксплуатации преобра-

зователя измеряются температура и выходной ток датчика, и путем

аппроксимации градуировочных данных вычисляется измеряемое

давление.



Дата добавления: 2022-05-27; просмотров: 57;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.