Огнезащита стальных несущих конструкций


Сталь является негорючим материалом, но, как и все материалы, используемые в строительстве, не может в течение длительного времени выдерживать воздействие высоких температур, возникающих внутри здания при пожаре. При температуре до 250 °С прочность мягкой малоуглеродистой стали увеличивается, затем этот предел постепенно снижается, и при 400 °С прочность стали вновь принимает свое первоначальное значение. Критическая температура, при которой происходит потеря несущей способности стальных конструкций при нормативной нагрузке, принимается равной 500 °С.

Нагрев металлических сооружений в условиях пожара зависит от множества факторов, среди которых основными являются интенсивность огня и способы теплозащиты металлоконструкций.

Конструкции без огнезащиты деформируются и разрушаются под воздействием напряжений от внешних нагрузок и температуры. Огнезащита, блокируя тепловой поток от огня к поверхности конструкций, предохраняет ее от быстрого прогревания и позволяет сохранить несущую способность в течение заданного времени.

Металлы отличаются высокой теплопроводностью, поэтому их огнезащита заключается в создании на поверхности металлических элементов конструкций теплоизолирующих экранов, выдерживающих воздействие огня или высоких температур.

Наличие теплоизолирующих экранов позволяет конструкциям при пожаре замедлить прогревание металла и сохранить свои функции в течение определенного времени, то есть до наступления критической температуры, при которой начинается потеря несущей способности.

Можно выделить следующие способы огнезащиты стальных конструкций:

• облицовка конструкций огнезащиты плитными материалами или установка огнезащитных экранов на относе (конструктивный способ);

• нанесение непосредственно на поверхность конструкций огнезащитных покрытий (обмазка, окраска, напыление и т.д.);

• комбинированный (композиционный) способ, представляющий собой рациональное сочетание различных способов огнезащиты.

Предельное состояние по огнестойкости строительных конструкций характеризуется:

• потерей несущей способности в результате обрушения или достижения предельных деформаций (R);

• потерей целостности в результате образования в конструкции сквозных трещин или отверстий, через которые на необогреваемую поверхность проникают продукты горения или пламя (Е);

• потерей теплоизолирующей способности вследствие повышения температуры на необогреваемой поверхности конструкции более чем на 140 °С (I).

Согласно п. 8.2 ГОСТ 30247.0-94 "Конструкции строительные. Методы испытания на огнестойкость", в зависимости от вида конструкций и их роли в устойчивости зданий и сооружений для нормирования пределов огнестойкости несущих и ограждающих конструкций, применяются следующие предельные состояния:

• для колонн, балок, ферм, арок и рам - только потеря несущей способности конструкции и узлов (R);

• для наружных несущих стен и покрытий - потеря несущей способности и целостности (R, E);

• для наружных ненесущих стен - только потеря целостности (Е);

• для ненесущих внутренних стен и перегородок - потеря теплоизолирующей способности и целостности (Е, I);

• для несущих внутренних стен и противопожарных преград - потеря несущей способности, целостности и теплоизолирующей способности (R, Е, I).

Фактический предел огнестойкости стальных конструкций (см. табл. 1) при так называемом стандартном пожаре в зависимости от толщины элементов и величины действующих напряжений равен 6-15 минутам. Значение требуемых пределов огнестойкости основных строительных конструкций, в том числе металлических, составляет от 15 минут до 4 часов в зависимости от степени огнестойкости здания и типа конструкций. Однако большинство незащищенных стальных конструкций может удовлетворять минимальным требованиям по пределу огнестойкости лишь до 15 минут. Это позволяет сделать вывод о том, что область применения металлических конструкций ограничена по огнестойкости, так как не обеспечивается выполнение следующего условия безопасности:

Пф / Птр

где Пф - фактический предел огнестойкости конструкций;

Птр - требуемый (нормативный) предел огнестойкости.

Это условие безопасности является основным критерием обоснования необходимости огнезащиты металлических конструкций, то есть если значение показателя Пф больше или равно значению Птр, то огнезащита не требуется, а при Пф меньше Птр огнезащита обязательна.

Необходимые пределы огнестойкости строительных конструкций определяются исходя из требуемой степени огнестойкости зданий (сооружений) по таблице 4* СНиП 21-01-97".

Фактические пределы огнестойкости строительных конструкций можно установить двумя способами: огневыми испытаниями (REI) и расчетным методом (RI).

В соответствии с методикой расчета, изложенной в"Пособии по определению пределов огнестойкости, пределов распространения огня по конструкциям и групп возгораемости материалов" (ЦНИИСК им. В.А. Кучеренко Госстроя СССР, Москва, 1985 г.), следует считать, что металлические конструкции не распространяют огонь (предел распространения огня здесь нужно приравнивать к нулю).

Предел огнестойкости несущих металлоконструкций зависит от приведенной толщины металла (6пр, мм) и собственного предела огнестойкости. Приведенная толщина металла вычисляется по формуле:

Тпр = F/P,

где F - площадь сечения (мм2), значение которой для проката фасонной стали берется по сортаменту (ГОСТу), а для составных (сварных) сечений определяется из расчета суммы площадей составляющих элементов конструкций;

Р - периметр обогреваемой поверхности конструкции (мм).

Обогреваемый периметр металлоконструкций определяется без учета поверхностей, примыкающих к плитам, настилам перекрытий и стенам при условии, что предел огнестойкости этих конструкций не ниже предела огнестойкости обогреваемой конструкции.

Для ферм и других статически определимых конструкций, состоящих из элементов различного сечения, приведенная толщина металла определяется по наименьшему значению для всех нагруженных элементов. При установлении предела огнестойкости стальных конструкций с огнезащитой по IV предельному состоянию (для конструкций, защищенных огнезащитными покрытиями и испытываемых без нагрузок, предельным состоянием будет достижение критической температуры материала конструкции) в качестве критической температуры следует принимать параметр 500 °С (Пособие по определению пределов огнестойкости, пределов распространения огня по конструкциям и групп возгораемости материалов, п. 2.34).

Продлить время сохранения свойств металлов в условиях пожара (когда это необходимо и экономически оправдано) можно, используя следующие способы:

• выбор изделий из металлов, более стойких к воздействию пожара. Здесь преимущество отдается сталям (вместо алюминиевых сплавов), причем низколегированным, а не углеродистым. При выборе арматурных изделий следует предпочесть арматуру, не упрочненную наклепом и термообработкой;

• изготовление специальных металлических изделий, более стойких к нагреву;

• огнезащита металлоизделий (конструкций) посредством нанесения внешних теплоизоляционных слоев.

Огнезащита металлоконструкций путем обетонирования по армирующей стальной сетке, оштукатуривания или облицовки негорючими листовыми материалами значительно утяжеляет конструкции и является весьма трудоемкой, что делает ее в ряде случаев неприемлемой. В настоящее время все большее распространение получают новые менее трудоемкие методы с использованием огнезащитных составов, незначительно утяжеляющих конструкции. Наиболее технологичным является нанесение на поверхность объекта тонкослойных вспучивающихся огнезащитных составов (красок). Их огнезащитные свойства проявляются за счет увеличения толщины слоя и изменения теплофизических характеристик при тепловом воздействии в условиях пожара.

Вспучивающиеся огнезащитные краски (покрытия) представляют собой композиционные материалы, имеющие в своем составе полимерное вяжущее и наполнители (антипирены, газообразователи, жаростойкие вещества и стабилизаторы вспененного угольного слоя). При нагревании они разлагаются вокруг защищаемой конструкции с поглощением тепла, происходит выделение инертных газов и паров, которые замещают атмосферный кислород и блокируют конвективный перенос тепла к защищаемой поверхности, подавляя пламя вблизи слоя покрытия, уменьшают радиационный поток тепла и замедляют процесс горения. Вспучивающиеся покрытия содержат компоненты, которые являются источником образования вспененного угольного слоя, покрывающего поверхность конструкции. Этот слой постепенно закоксовывается, становится жестким.

Вспененный слой, отличаясь низкой теплопроводностью, выполняет функцию теплозащитного экрана, который замедляет распространение тепла по конструкции и ее прогрев, в результате чего обработанный объект значительно позже попадает в область критической температуры.

Сегодня на территории Российской Федерации для обеспечения огнезащиты строительных конструкций используется широкий спектр средств огнезащитных материалов (штукатурные составы, вспучивающиеся краски, обмазки, минераловатные плиты (маты), сухие штукатурки), имеющие различную огнезащитную эффективность и соответственно достоинства и недостатки.

Для существующих огнезащитных составов, красок и мастик, сертифицированных в соответствии с методикой, описанной в НПБ 236-97 "Огнезащитные составы для стальных конструкций. Общие требования. Метод определения огнезащитной эффективности", определена лишь группа их огнезащитной эффективности.



Дата добавления: 2016-12-27; просмотров: 3747;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.009 сек.