Основные элементы распределительных устройств


Распределительные устройства всех напряжений, осуществляющие прием и распределение электрической энергии, выполняются со сборными шинами. Распределительные устройства ВН трансформаторных подстанций, предназначенные только для приема электрической энергии (без ее распределения), выполняются без сборных шин по блочным, мостиковым и другим схемам.
Распределительное устройство со сборными шинами состоит из сборных шин, к которым через ответвительные шины подключаются различные присоединения:
• питающие линии (ввод);
• отходящие линии;
• секционирование;
• трансформаторы напряжения;
• трансформаторы для собственного обслуживания;
• заземляющие разъединители сборных шин и др.
Сборными шинами называются короткие участки шин жесткой или гибкой конструкции, обладающие малым электрическим сопротивлением, предназначенные для подключения присоединений.
По своему назначению сборные шины делятся на рабочие, резервные и обходные. Рабочая система шин в нормальном режиме находится под напряжением и осуществляет питание всех подключенных к ней присоединений. Резервная система шин служит для питания присоединений подстанции в случае ремонта или ревизии рабочей системы шин. В нормальном режиме резервная система шин находится не под напряжением. Обходная система шин применяется при повышенных требованиях к надежности электроснабжения и позволяет осуществлять контроль и ремонт любого коммутационного аппарата без отключения потребителей. В нормальном режиме обходная система шин не под напряжением.
На всех присоединениях на участках от сборных шин до выключателей, предохранителей, трансформаторов напряжения и т. п., а также на участках, где возможна подача напряжения от других источников напряжения, обязательно устанавливаются разъединители, обеспечивающие видимый разрыв цепи. Указанное требование не распространяется на шкафы КРУ и КРУН с выкатными тележками, высокочастотные заградители и конденсаторы связи, трансформаторы напряжения, устанавливаемые на отходящих линиях, разрядники, устанавливаемые на вводах трансформаторов и на отходящих линиях.
Питающие и отходящие линии подключаются к сборным шинам через разъединители и выключатели. На каждую линию необходим один выключатель, один или два шинных разъединителя (в зависимости от применяемой системы сборных шин) и один линейный разъединитель (рис. 3.4.1, а, б). Выключатель служит для включения и отключения линии в нормальных и аварийных режимах. Шинный разъединитель предназначен для создания видимого отключения сети и создания безопасных условий для проведения контроля и ремонта выключателя, а также при двух системах шин — для переключения присоединений с одной системы шин на другую без перерыва в работе. Линейный разъединитель предусматривается в присоединениях, где при отключенном выключателе линия может оказаться под напряжением и необходимо видимое отключение линии для безопасного ремонта выключателя.
При использовании комплектных распределительных устройств вы-катного исполнения выключатели, трансформаторы напряжения и другое оборудование устанавливаются на выкатных тележках. В этом случае на схеме указываются штепсельные разъемы (рис. 3.4.1, в).
В распределительных устройствах обязательно предусматриваются стационарные заземляющие ножи, обеспечивающие заземление аппаратов и ошиновки без применения переносных заземлителей. Распределительные устройства должны быть оборудованы оперативной блокировкой, исключающей ошибочные действия с разъединителями, выключателями, заземляющими ножами и т. д.

 


Рис. 3.4.1. Присоединения выключателей к сборным шинам: а — с одной системой шин; б — с двумя системами шин; в — с одной системой шин выкатного исполнения

На присоединениях питающих и отходящих линий кроме коммутационных аппаратов устанавливаются трансформаторы тока, на воздушных линиях напряжением 35 кВ и выше — высокочастотные заградители и конденсаторы связи.
Трансформаторы напряжения устанавливаются на каждую систему шин, а если система шин делится на части (секции), то на каждую секцию шин. Трансформаторы напряжения подключаются к сборным шинам через разъединители и предохранители в РУ 6—35 кВ и через разъединители в РУ 110 кВ и выше.
При необходимости в распределительном устройстве предусматриваются трансформаторы для собственного обслуживания, которые служат для питания оперативных цепей, а также освещения технологических и вспомогательных зданий и сооружений подстанции. Трансформаторы для собственного назначения подключаются через предохранители до выключателей ввода, если ТСН используются для питания оперативных цепей, и на сборные шины, если ТСН не используются для питания оперативных цепей.

Применяются следующие схемы распределительных устройств [26]:
• с одной несекционированной системой шин;
• с одной секционированной системой шин;
• с двумя одиночными секционированными системами шин';
• с четырьмя одиночными секционированными системами шин2;
• с одной секционированной и обходной системами шин;
• с двумя системами шин;
• с двумя секционированными системами шин;
• с двумя системами шин и обходной;
• с двумя секционированными системами шин и обходной. Схема с одной несекционированной системой шин — самая простая
схема, которая применяется в сетях 6—35 кВ (рис. 3.4.2). В сетях 10(6) кВ схему называют одиночной системой шин. На отходящих и питающих линиях устанавливается один выключатель, один шинный и один линейный разъединители.
1 Для РУ 10(6) кВ ПС с двумя трансформаторами с расщепленной обмоткой или с одним трансформатором с расщепленной обмоткой и двумя сдвоенными реакторами.
2 Для РУ 10(6) кВ ПС с двумя трансформаторами с расщепленной обмоткой и двумя сдвоенными реакторами.


Рис. 3.4.2. Схема с одной системой шин

Недостатки данной схемы:
• в схеме используется один источник питания;
• профилактический ремонт сборных шин и шинных разъединителей связан с отключением распределительного устройства, что приводит к перерыву электроснабжения всех потребителей на время ремонта;
• повреждения в зоне сборных шин приводят к отключению распределительного устройства;
• ремонт выключателей связан с отключением соответствующих присоединений.

Схема с одной секционированной выключателем системой шин (рис. 3.4.3) позволяет частично устранить перечисленные выше недостатки предыдущей схемы путем секционирования системы шин, т. е. разделения системы шин на части с установкой в точках деления секционных выключателей. Секционирование, как правило, выполняется так, чтобы каждая секция шин получала питание от разных источников питания. Число присоединений и нагрузка на секциях шин должны быть по возможности равными.
В нормальном режиме секционный выключатель может быть включен (параллельная работа секций шин) или отключен (раздельная работа секций шин). В системах электроснабжения промышленных предприятий и городов предусматривается обычно раздельная работа секций шин. Данная схема проста, наглядна, экономична, обладает достаточно высокой надежностью, широко применяется в промышленных и городских сетях для электроснабжения потребителей любой категории на напряжениях до 35 кВ включительно.

Рис. 3.4.3. Схема с одной секционированной системой шин

 

Допускается применять данную схему при пяти и более присоединениях в РУ 110—220 кВ из герметизированных ячеек с элегазовой изоляцией, а также в РУ 110 кВ с выкатными выключателями при условии возможности замены выключалей в эксплуатационный период. В сетях 10(6) кВ эта схема имеет преимущество. По сравнению с одиночной несекционированной системой шин данная схема имеет более высокую надежность, так как при коротком замыкании на сборных шинах отключается только одна секция шин, вторая остается в работе.
Недостатки схемы с одной секционированной выключаталем системы шин:
• на все время проведения контроля или ремонта секции сборных шин один источник питания отключается;
• профилактический ремонт секции сборных шин и шинных разъединителей связан с отключением всех линий, подключенных к этой секции шин;
• повреждения в зоне секции сборных шин приводят к отключению всех линий соответствующей секции шин;
• ремонт выключателей связан с отключением соответствующих присоединений.
Вышеперечисленные недостатки частично устраняются при использовании схем с большим числом секций. На рис. 3.4.4 представлена схема РУ 10(6) кВ подстанции с двумя трансформаторами с расщепленной обмоткой или с двумя сдвоенными реакторами. Схема имеет четыре секции шин и называется «две одиночные секционированные выключателями системы шин». При наличии одновременно двух трансформаторов с расщепленной обмоткой и двух сдвоенных реакторов применяется схема, состоящая из восьми секций шин, которая называется «четыре одиночные секционированные выключателями системы шин» (рис. 3.4.5).

Схема с одной секционированной выключателем и обходной системами шин позволяет проводить ревизию и ремонт выключателей без отключения присоединения. В нормальном режиме обходная система шин находится без напряжения, разъединители, соединяющие линии и трансформаторы с обходной системой шин, отключены. В схеме могут быть установлены два обходных выключателя, осуществляющие связь каждой секции шин с обходной. В целях экономии средств ограничиваются одним обходным выключателем с двумя шинными разъединителями, с помощью которых обходной выключатель может быть присоединен к первой или второй секциям шин. Именно эта схема предлагается в качестве типовой для распределительных устройств напряжением 110—220 кВ при пяти и более присоединениях (рис. 3.4.6).

 

Рис. 3.4,4. Схема с двумя одиночными секционированными системами шин (ТСН при постоянном оперативном токе подключаются к сборным шинам)

 

Рис. 3.4.6. Схема с одной секционированной и обходной системами шин с обходным (Q1.) и секционным (Q2) выключателями

В схеме с двумя системами сборных шин каждое присоединение содержит выключатель, два шинных разъединителя и линейный разъединитель. Системы шин связываются между собой через шиносоединительный выключатель (рис. 3.4.7). Возможны два принципиально разных варианта работы этой схемы. В первом варианте одна система шин является рабочей, вторая — резервной. В нормальном режиме работы все присоединения подключены к рабочей системе шин через соответствующие шинные разъединители. Напряжение на резервной системе шин в нормальном режиме отсутствует, шиносоединительный выключатель отключен. Во втором варианте, который в настоящее время получил наибольшее применение, вторую систему сборных шин используют постоянно в качестве рабочей в целях повышения надежности электроустановки. При этом все присоединения к источникам питания и к отходящим линиям распределяют между обеими системами шин. Шиносоединительный выключатель в нормальном режиме работы замкнут. Схема называется «две рабочие системы шин».
Схема с двумя системами шин позволяет производить ремонт одной системы шин, сохраняя в рабочем состоянии все присоединения. Для этого все присоединения переводят на одну систему шин путем соответствующих переключений коммутационных аппаратов. Данная схема является гибкой и достаточно надежной.
Недостатки схемы с двумя системами шин:
• при ремонте одной из систем шин на это время снижается надежность схемы;

Рис. 3.4.7. Схема с двумя системами шин с шиносоединительным выключателем Q1

• при замыкании в шиносоединительном выключателе отключаются обе системы шин;
• ремонт выключателей и линейных разъединителей связан с отключением на время ремонта соответствующих присоединений;
• сложность схемы, большое число разъединителей и выключателей. Частые переключения с помощью разъединителей увеличивают вероятность повреждений в зоне сборных шин. Большое число операций с разъединителями и сложная блокировка между выключателями и разъединителями приводят к возможности ошибочных действий обслуживающего персонала.
Схему «две рабочие системы шин» допускается применять в РУ 110—220 кВ при числе присоединений от 5 до 15, если РУ выполнено из герметизированных ячеек с элегазовой изоляцией, а также в РУ 110 кВ с выкатными выключателями при условии замены выключателя в удовлетворяющее эксплуатацию время.
В РУ 110—220 кВ при числе присоединений более 15 делят сборные шины на секции с установкой в точках деления секционных выключателей (рис. 3.4.8). При этом должно предусматриваться два ши-носоединительных выключателя. Таким образом, распределительное устройство делится на четыре части, связанные между собой двумя секционными и двумя шиносоединительным и выключателями. Данная схема называется «две рабочие секционированные выключателями системы шин». Она используется при тех же условиях, что и схема «две рабочие системы шин».

Рис. 3.4.8. Схема с двумя секционированными системами шин с двумя шиносоединительными (QI, Q2) и двумя секционными (Q3, Q4) выключателями

Схема с двумя системами шин и обходной с шиносоединительным и обходным выключателями обеспечивает возможность поочередного ремонта выключателей без перерыва в работе соответствующих присоединений (рис. 3.4.9). Схема рекомендуется к применению в РУ 110—220 кВ при числе присоединений от 5 до 15. В нормальном режиме работы обе системы шин являются рабочими, шиносоединительный выключатель находится во включенном положении.

Рис. 3.4.9. Схема с двумя системами шин и обходной с шиносоединительным (Q1) и обходным (Q2) выключателями
При числе присоединений более 15 или более 12 и при установке на подстанции трех трансформаторов мощностью 125 МВА и более рекомендуется к применению схема «две рабочие секционированные выключателями и обходная системы шин» с двумя шиносоединительными выключателями и двумя обходными выключателями. Связь между секциями шин обеспечивается через секционные выключатели, которые в нормальном режиме отключены (рис. 3.4.10).
Рекомендации по применению данной схемы распределительных устройств 6—220 кВ приведены в табл. 3.4.1.

Рис. 3.4.10. Схема с двумя системами шин и обходной с двумя шиносоединительными (Ql, Q2) и двумя обходными (Q3, Q4) выключателями (Q5,
Q6 — секционные выключатели)

Таблица 3.4.1. Рекомендации по применению схем распределительных устройств напряжением до 220 кВ включительно

Система сборных шин Область применения Номер (номинальное напряжение-индекс схемы по [26])*
Одиночная система шин В РП, РУ 10(6) кВ при отсутствии присоединений с электроприемниками первой категории или при наличии резервирования их от других РП, РУ
Одна рабочая секционированная выключателем система шин В РП, РУ 10(6) кВ В РП 35 кВ; в РУ ВН и СИ 35 кВ. Допускается применять в РУ 110—220 кВ при пяти и более присоединениях, если РУ выполнено из герметизированных ячеек с элегазовой изоляцией, а также в РУ 110 кВ с выкатными выключателями при условии замены выключателя в удовлетворяющее эксплуатацию время 10(6)-1;35-9
Две одиночные секционированные выключателями системы шин В РУ 10(6) кВ с двумя трансформаторами с расщепленной обмоткой или с двухобмоточными трансформаторами и двумя сдвоенными реакторами 10(6)-2
Четыре одиночные секционированные системы шин В РУ 10(6) кВ с двумя трансформаторами с расщепленной обмоткой и с двумя сдвоенными реакторами 10(6)-3
Одна рабочая секционированная выключателем и обходная системы шин В РУ 110—220 кВ при пяти и более присоединениях
Две рабочие системы шин Допускается применять при числе присоединений от 5 до 15 в РУ 110—220 кВ из герметизированных ячеек с элегазовой изоляцией, а также в РУ 110 кВ с выкатными выключателями при условии замены выключателя в удовлетворяющее эксплуатацию время
Две рабочие и обходная системы шин 1. В РУ 10 кВ для энергоемких предприятий с электроприемниками первой категории (например, для предприятий цветной металлургии). 2. В РУ 110—220 кВ при числе присоединений от 5 до 15
Две рабочие секционированные выключателями системы шин Допускается применять при числе присоединений более 15 в РУ 110—220 кВ из герметизированных ячеек с элегазовой изоляцией, а также в РУ 110 кВ с выкатными выключателями при условии замены выключателя в удовлетворяющее эксплуатацию время
Две рабочие секционированные выключателем и обходная системы шин с двумя шиносоединитель-ными и двумя обходными выключателями 1. В РУ 110—220 кВ при числе присоединений более 15. 2. В РУ 220 кВ при трех, четырех трансформаторах мощностью 125 МВ-А и более при общем числе присоединений от 12 и более

* Первая цифра означает номинальное напряжение, вторая — индекс схемы.

Применяются следующие схемы распределительных устройств:
• блочные;
• мостиковые;
• заход—выход;
• четырехугольника.
Блочные схемы. Блочной схемой называется схема «блок линия—трансформатор» без сборных шин и связей с выключателями между двумя блоками на двухтрансформаторных подстанциях (между двумя блоками может устанавливаться неавтоматическая перемычка из разъединителей). Блочные схемы применяются на стороне ВН тупиковых подстанций напряжением до 500 кВ включительно, ответвительных и проходных подстанций, присоединяемых к одной или к двум линиям, до 220 кВ включительно.
Схемы «блок линия—трансформатор» могут выполняться:
• без коммутационных аппаратов (схема глухого присоединения) или только с разъединителем;
• с отделителем1;
• с выключателем.
Схема «блок линия—трансформатор без коммутационных аппаратов»
применяется при напряжениях 35—330 кВ и питании подстанции по радиальной схеме. Использование данной схемы целесообразно в случаях, когда подстанция размещается в зоне сильного промышленного загрязнения (рис. 3.4.11, а). Для питания трансформаторов следует использовать кабельные линии высокого напряжения, что позволяет исключить воздействие окружающей среды на изоляцию вводов даже при открытой установке трансформаторов.

Рис. 3.4.11.Схема «блок линия—трансформатор»: а — без коммутационных аппаратов с кабельным вводом (схема глухого присоединения); б — с разъединителем
Имеет ограниченное применение в сетях напряжением 110 кВ.

Для защиты трансформатора напряжением 330 кВ любой мощности, а также трансформатора напряжением 110, 220 кВ мощностью более 25 MB А предусматривается передача отключающего сигнала на головной выключатель, который обеспечивает отключение питающей линии в случае повреждения трансформатора. Выбор способа передачи сигнала зависит от длины питающей линии, мощности трансформатора, требований по надежности отключения. При мощности трансформатора 25 МВ-А и менее, а также при кабельном вводе в трансформатор передача отключающего сигнала может не предусматриваться [26].
Схема «блок линия—трансформатор с разъединителем» применяется в тех же случаях, что и предыдущая (рис. 3.4.11, б).
На схемах, приведенных на рис. 3.4.11, для упрощения показан один блок, в случае двухтрансформаторных подстанций число таких блоков удваивается. Перемычка между блоками не предусматривается. Это рекомендуется использовать в условиях интенсивного загрязнения и при ограниченной площади застройки.
Схему «блок линия—трансформатор с отделителем»' допустимо применять на напряжении 110 кВ и трансформаторах мощностью до 25 МВА при необходимости автоматического отключения поврежденного трансформатора от линии, питающей несколько подстанций (рис. 3.4.12, а). Отделители на стороне ВН подстанций могут применяться как с короткозамыкателями, так и с передачей отключающего сигнала на выключатель головного участка магистрали.
На двухтрансформаторных подстанциях используется схема «два блока линия—трансформатор» с отделителем и неавтоматической перемычкой со стороны линий (рис. 3.4.12, б). В нормальном режиме работы один из разъединителей в перемычке должен быть разомкнут.
Запрещается применять схему с отделителем в случае [26]:
• распределительных устройств, расположенных в районах холодного климата по ГОСТ 15150—69, а также в районах, где часто наблюдается гололед;
• сейсмичности более 6 баллов по шкале MSK-614;
• воздействия отделителя и короткозамыкателя, которое приводит к выпадению из синхронизма синхронных двигателей или нарушению технологического процесса;
• использования подстанции на транспорте и в нефте- и газодобывающей промышленности;
• применения трансформаторов, присоединенных к линиям, имеющим ОАПВ.
1 В соответствии с «Рекомендациями по технологическому проектированию подстанций переменного тока с высшим напряжением 35—750 кВ» (Издательство НЦ ЭНАС, 2004 г.) при проектировании применять схему с отделителем и короткозамыкателем не рекомендуется, а при реконструкции и техническом перевооружении подстанций предусматривать замену этих аппаратов на выключатели.


Рис. 3.4.12.Схема «блок линия—трансформатор»: а — с отделителем; б — два блока с отделителями и неавтоматической перемычкой со стороны линии; в — с выключателем; г — два блока с выключателями и неавтоматической перемычкой со стороны линии; 1,2 — трансформаторы тока и напряжения, установка которых должна быть обоснована; 3 — разъединители, которые устанавливаются при напряжениях 110, 220 кВ и наличии собственного питания

Схема «блок линия—трансформатор с выключателем» применяется на подстанциях напряжением 35—220 и 500 кВ в тех случаях, когда нельзя использовать более простые и дешевые схемы первичной коммутации подстанций (рис. 3.4.12, в). На двухтрансформаторных подстанциях напряжением 35—220 кВ применяется схема «блок линия—трансформатор» с выключателем и неавтоматической перемычкой со стороны линии (рис. 3.4.12, г). Блочные схемы просты, экономичны, но при повреждениях в линии или в трансформаторе автоматически отключаются линия и трансформатор.
В схеме «мостик» линии или трансформаторы на двух-, трехтрансформаторных подстанциях соединяются между собой с помощью выключателя. Данная схема применяется на стороне ВН 35—220 кВ подстанций при необходимости секционирования выключателем линий или трансформаторов мощностью до 63 МВА включительно. На напряжениях 110 и 220 кВ схема мостика применяется, как правило, с ремонтной перемычкой, которая при соответствующем обосновании может не предусматриваться. Ремонтная перемычка позволяет выполнять ревизию любого выключателя со стороны линий или трансформаторов при сохранении в работе линий и трансформаторов. Перемычка обычно не предусматривается при электрификации сельских сетей напряжением 35 кВ.
Схема «мостик с выключателем в перемычке и отделителями в цепях трансформаторов» применяется в тех же случаях, что и блочные схемы с отделителями (рис. 3.4.13).


Рис. 3.4.13.Схема «мостик с выключателем в перемычке и отделителями в цепях трансформаторов»: / — трансформаторы тока, установка которых должна быть обоснована (индекс схемы — 5 по [26])

Схема «мостик с выключателями в цепях линий и ремонтной перемычкой со стороны линий» может применяться на тупиковых, ответвительных и проходных подстанциях напряжением 35—220 кВ (рис. 3.4.14). На тупиковых и ответвительных подстанциях ремонтная перемычка и перемычка с выключателем нормально разомкнуты. При аварии на одной из линий автоматически отключается выключатель со стороны поврежденной линии и включается выключатель в перемычке, оба трансформатора остаются работающими. В случае аварии на одном из трансформаторов отключение выключателя приводит к отключению трансформатора и питающей линии. Отключение линии при повреждении трансформатора является недостатком данной схемы.
На проходных подстанциях перемычка с выключателем нормально замкнута, через нее осуществляется транзит мощности.
Схема «мостик с выключателями в цепях трансформаторов и ремонтной перемычкой со стороны трансформаторов» (рис. 3.4.15) применяется в тех же случаях, что и схема, приведенная на рис. 3.4.14. Особенность данной схемы состоит в том, что при аварии в линии автоматически отключается поврежденная линия и трансформатор. При аварии на трансформаторе после автоматических переключений в работе остаются две линии и два источника питания. Учитывая, что аварийное отключение трансформаторов происходит сравнительно редко, более предпочтительна схема, приведенная на рис. 3.4.14.


Рис. 3.4.14. Схема «мостик с выключателями в цепях линий и ремонтной перемычкой со стороны линий»: / — трансформаторы тока, установка которых должна быть обоснована (индекс схемы — 5Н по [26])

Рис. 3.4.15.Схема «мостик с выключателями в цепях трансформаторов и ремонтной перемычкой со стороны трансформаторов»: / — трансформаторы тока, установка которых должна быть обоснована (для напряжения 35 кВ ремонтная перемычка, как правило, не предусматривается) (индекс схемы — 5АН по [26J)

Схема «заход—выход» применяется на проходных подстанциях напряжением 110—220 кВ (рис. 3.4.16). В схеме устанавливается два выключателя со стороны линии, которые позволяют отключать поврежденный участок линии. Данная схема может применяться как с ремонтной перемычкой, так и без нее.

Рис. 3.4.16. Схема «заход—выход»: / — трансформаторы тока, установка которых должна быть обоснована (индекс схемы — 6 по [26])

Схема четырехугольника применяется в РУ 110—750 кВ при четырех присоединениях (две линии и два трансформатора) и необходимости секционирования транзитной линии при мощности трансформаторов от 125 МВА и более при напряжениях 110—220 кВ и любой мощности при напряжениях 330 кВ и выше (рис. 4.3.17). В схеме со стороны линии установлены через развилку два выключателя, подключаемых к разным трансформаторам. Данная схема обладает более высокой надежностью по сравнению со схемой «мостика», так как авария в линии или в трансформаторе приводит к отключению только поврежденного элемента. Недостаток схемы — при отключении одной из линий трансформаторы получают питание по одной линии от одного источника питания.

 


Рис. 3.4.17. Схема четырехугольника: / — трансформаторы тока, установка которых должна быть обоснована (индекс схемы — 7 по [26])
Рекомендации по применению схем приведены в табл. 3.4.2.

Таблица ЗА.2. Рекомендации по применению схем распределительных устройств без сборных шин напряжением 35 кВ и выше трансформаторных подстанций

 

Схема Область применения Индекс схемы (по [26])
  Блочные схемы  
Блок линия—трансформатор без коммутационных аппаратов При напряжениях 35—330 кВ и радиальной схеме питания подстанции в условиях сильного промышленного загрязнения окружающей среды
Блок линия—трансформатор При напряжениях 35—330 кВ и радиальной схеме питания подстанции
с разъединителем  
Схема Область применения Индекс схемы (по [26])
Блок линия—трансформатор с отделителем При напряжении 110 кВ и магистральной схеме питания подстанции (кроме проходных) с трансформаторами мощностью до 25 МВ-А (исключения см. раздел 3.4.3)
Два блока линия—трансформатор с отделителем и неавтоматной перемычкой То же
Блок линия—трансформатор с выключателем При напряжении 35—220, 500 кВ на тупиковых и ответвительных подстанциях ЗН
Два блока линия—трансформатор с выключателем и неавтоматной перемычкой со стороны линий При напряжении 35—220 кВ на тупиковых и ответвительных подстанциях
Костиковые схемы
Мостик с выключателем в перемычке и отделителями в цепях трансформаторов При магистральной схеме питания и напряжении 110 кВ на подстанциях с трансформаторами мощностью до 25 МВ-А (исключения см. раздел 3.4.3) СП    
Мостик с выключателями в цепях линий и ремонтной перемычкой со стороны линий При напряжениях 35—220 кВ на тупиковых, ответвительных и проходных подстанциях при необходимости секционирования линий и мощности трансформаторов до 63 МВ-А включительно    
Мостик с выключателями в цепях трансформаторов и ремонтной перемычкой в цепях трансформаторов При напряжении 35—220 кВ на тупиковых, ответвительных и проходных подстанциях при необходимости секционирования трансформаторов при мощности трансформаторов до 63 МВ-А включительно 5АН    
Схемы «заход—выход» и четырехугольника
Заход—выход На проходных подстанциях при напряжении 110, 220 кВ    
Четырехугольника В РУ подстанций при четырех присоединениях и необходимости секционирования транзитных линий и мощности трансформаторов от 125 МВ-А при напряжении 110, 220 кВ и любой мощности при напряжении 330—750 кВ    

 

Распределительные подстанции напряжением 10(6) кВ в соответствии с ПУЭ называются распределительными пунктами (РП). Последние широко применяются в системах электроснабжения промышленных предприятий, городов, поселков, агропромышленных комплексов. Распределительные пункты, как правило, выполняются с одиночной секционированной или несекционированной системой шин. Распределительные пункты в системах электроснабжения промышленных предприятий рекомендуется сооружать для удаленных от ГПП потребителей [компрессорных, насосных станций, производственного корпуса с несколькими трансформаторными подстанциями 10(6) кВ]. При числе отходящих линий 10(6) кВ менее восьми целесообразность сооружения РП должна быть обоснована [5].
Для городских сетей целесообразность сооружения РП [19] определяется следующим: нагрузка РП на расчетный срок должна составлять на шинах 10 кВ не менее 7 МВт, на шинах 6 кВ — не менее 4 МВт.
РУ 10(6) кВ трансформаторных подстанций выполняются с одиночной секционированной, двумя или четырьмя одиночными секционированными системами шин (см. табл. 3.4.1). На крупных энергоемких предприятиях с электроприемниками высокой категорийности могут применяться распределительные устройства с двумя рабочими системами шин и двумя рабочими системами шин с обходной.
Распределительные устройства с одиночной системой шин с любым числом секций и распределительные пункты выполняются комплектными.



Дата добавления: 2016-12-27; просмотров: 9786;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.015 сек.