Второй замечательный предел


или в, общем, виде, .

Также полезна следующая форма записи второго замечательного предела

Второй замечательный предел используется для раскрытия неопределенности вида 1¥.

Рассмотрим примеры:

1) ;

2)

.

 

5. Сравнение бесконечно малых

Мы отмечали свойства бесконечно малых: алгебраическая сумма (конечного числа) бесконечно малых, произведение бесконечно малых есть бесконечно малая. О частном же бесконечно малых в этих свойствах ничего не говорилось. Оказывается, в зависимости от характера бесконечно малых, от скорости их стремления к нулю зависит и поведение их частного.

Рассмотрим, например, функции a(х) = х, b(х) = х2, g (х) = 2х + х2 , бесконечно малые при х® 0. Имеем:

при х® 0, , а ,

т.е. частое может быть и сколь угодно большим, и бесконечно малым, и стремиться к конечному числу. При этом, заметим, что функция b(х) = х2 быстрее стремится к нулю, чем, например, a(х) = х:

х 0,1 0,01 0,001
a(х)=х 0,1 0,01 0,001
b(х)=х2 0,01 0,0001 0,000001

Определение 2.11.

Пусть a(х) и b(х) – бесконечно малые в точке х0 функции.

1) Если , то a(х) называется бесконечно малой более высокого порядка, чем b(х) и обозначается a = о(b).

2) Если , 0 < |A| < ¥, то a(х) и b(х) – бесконечно малые одинакового порядка , обозначается a = О(b) или b = О(a).

3) Если , 0 < |A| < ¥, то a(х) называется бесконечно малой порядка т в точке х0 (т ÎN). При этом функцию (хх0)т называют эталоном бесконечно малых в точке х0.

4) Если , то a(х) и b(х) называются эквивалентными (асимптотически равными). Обозначается a ~ b.

Справедлива

Теорема 2.9.

Пусть a(х) и b(х) – бесконечно малые в точке х0 функции.

1) Если a ~ b, то a – b = о(b), a – b = о(a), a ~ b ± о(a), a ± о(b)~b.

2) Если a = о(g), b = о(g), где g(х) – бесконечно малая в точке х0, то

a ± b = о(g), a ± о(b) = о(g).

3) Если a ~ a1 , b ~ b1 , где a1(х) и b1(х) – бесконечно малые в точке х0, то

Доказательство:

1) Если a ~ b, то . Рассмотрим
, а это и означает, что a – b = о(b). Аналогично можно показать, что a – b = о(a).

Рассмотрим
,

откуда a ± о(b)~b. Утверждение a ~ b ± о(a) – доказать самостоятельно.

2) – доказать самостоятельно.

3) Учитывая a ~ a1 , b ~ b1, имеем

=

= 1 1 = ЧТД.

 

Замечание.

Как следует из теоремы 2.9, если a ~ b, то a = b + о(b). В этом случае, бесконечно малую b называют главной частью бесконечно малой a.

Справедливы следующие соотношения (таблица эквивалентности):

при a® 0
sin a ~ a tg a ~ a ~ arcsin a ~ a arctg a ~ a ln(1+a) ~ a ea - 1 ~ a

 

Пользуясь этой таблицей и теоремой 2.9, можно вычислять сложные пределы:

,

.

Аналогично можно определить сравнение бесконечно больших функций. Пусть f(x) и g(x) – бесконечно большие в точке х0 функции. Тогда

1) Если , 0 < |A| < ¥, то функции f(x) и g(x) – одинакового порядка роста. Обозначается f(x) = О(g(x)) или g(x) = О(f(x))

2) Если , то f(x) – более высокого порядка роста, чем g(x), а g(x) – более низкого порядка роста, чем f(x), обозначается
g(x) = о(f(x)).

3) Если , то функции называются эквивалентными бесконечно большими. Обозначается f(x) ~ g(x).

Свойства, сформулированные в теореме 2.9, могут быть перенесены и на эквивалентные бесконечно большие функции.

 



Дата добавления: 2017-11-21; просмотров: 668;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.009 сек.